Basic RL Settings
Monte-Carlo policy evaluation

• Given π, estimate $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$

• Alg outputs v; evaluated by $|v - J(\pi)|$

• Data: trajectories starting from $s_1 \sim d_0$ using π (i.e., $a_t = \pi(s_t)$)

\[\{(s_1^{(i)}, a_1^{(i)}, r_1^{(i)}, s_2^{(i)}, \ldots, s_H^{(i)}, a_H^{(i)}, r_H^{(i)})\}_{i=1}^n \]

(for simplicity, assume process terminates in H time steps)

• Algorithm: output \[\frac{1}{n} \sum_{i=1}^n \sum_{t=1}^H \gamma^{t-1} r_t^{(i)} \]

• Guarantee: w.p. at least $1 - \delta$, $|v - J(\pi)| \leq \frac{R_{\text{max}}}{1 - \gamma} \sqrt{\frac{1}{2n} \ln \frac{2}{\delta}}$

 - Depends on value range & sample size
 - No dependence on anything else, e.g., state/action spaces
Monte-Carlo optimization

• Want to optimize $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$; have parameterized π_θ.
• For each θ, roll-out trajectories using π_θ to estimate $J(\pi_\theta)$
• Pick a bunch of θ, estimate return, pick the best
• In general, reduce to 0-th order optimization
 ◦ e.g., CMA-ES for RL
• Guarantee: depends on optimization
Model-based RL w/ sampling oracle

- Want to optimize $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)
- Use a total of $n|S \times A|$ samples: n samples per (s, a)
- Estimate transition probabilities
- Plan in the estimated model
- Guarantee (will analyze later) depends on:
 - Sample size, value range
 - Horizon (error compounding)
 - $|S \times A|$ (“curse of dimensionality”)
Categorization of RL settings
What’s the goal?

- Policy evaluation: given π, estimate its value.
 - Estimate $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$
 e.g., alg outputs v; evaluated by $|v - J(\pi)|$
 - Estimate the entire value function
 e.g., alg outputs $V \in \mathbb{R}^S$; evaluated by $\|V - V^\pi\|_\infty$
- Policy optimization
 - Optimize $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$
 e.g., alg outputs π; evaluated by $J(\pi^*) - J(\pi)$
 - No particular initial state
 e.g., alg outputs π; evaluated by $\|V^* - V^\pi\|_\infty$
Where do data come from?

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)
 - For policy evaluation of π
 - Data generated w/ π: on-policy (somewhat easy)
 - Data generated w/ π': off-policy (requires counter-factual reasoning)
- Collect own data
 - Can query any (s,a): planning w/ “generative model”
 - Can only roll-out trajectories: exploration!
What’s the basic principle?

Monte-Carlo

- e.g., roll-out trajectories to estimate return
- e.g., policy gradient, evolutionary strategies
- e.g., Monte-Carlo tree search

✓ Often no dependence on state space
✓ No compounding error
✗ Learning signals can be sparse
✗ Run into exponential variance when off-policy
What’s the basic principle?

Dynamic programming

• use data to approximately solve Bellman Equation
• often in a “bottom-up” fashion (e.g., value iteration)

✗ “Curse of dimensionality” (dependence on state space)
✗ Error compounds over time
✓ Leverage immediate signals to learn
✓ Handles off-policy data w/o exponential variance
Manageable state spaces?

Yes: tabular RL

No (sample size \(<\) state space): function approximation.

Approximate what?

• Model?
• Value function?
• Policy?