Proof: Define π_{i} as an nox-ctationam poling, where the first i steps π is followed, and π is followed for the remaining steps.

$$
\begin{aligned}
& V^{\pi^{\prime}}(s)-V^{\pi}(s)=\sum_{i=0}^{\infty}\left(V^{\pi_{i+1}}(s)-V^{\pi_{i}}(s)\right) \\
& =\sum_{i=0}^{\infty} \gamma^{i} \sum_{s^{\prime} \in s^{\prime}} \mathbb{P}\left[s_{i+1} s^{\prime} \mid s_{1}=s, \pi\right]\left(Q^{\pi}\left(s^{\prime}, \pi^{\prime}\left(s^{\prime}\right)\right)-Q^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right) \\
& =\sum_{s^{\prime} \in S} \sum_{i=0}^{\infty} \gamma^{i} \mathbb{P}\left[s_{i+1}-s^{\prime} \mid s_{1}=s, \pi\right] A^{\pi}\left(s^{\prime}, \pi^{\prime}\right) \\
& =\frac{1}{1-\gamma} \sum_{s^{\prime} \in S} \eta_{s}^{\pi^{\prime}}\left(s^{\prime}\right) A^{\pi}\left(s, \pi^{\prime}\right)=\frac{1}{1-\gamma} \mathbb{E}_{s^{\prime} \sim \eta_{s}^{\prime^{\prime}}}\left[A^{\pi}\left(s^{\prime}, \pi^{\prime}\right)\right]
\end{aligned}
$$

