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A common aspect of methods surveyed in the previous lectures is that the size of dataset (or sample
size) required to yield learning guarantees is polynomial in the size of the state space. When the size
of the state space is very large, as will be the case in many challenging problems, the agent needs to
generalize what is learned about one state to other states using prior knowledge.

One of the easiest-to-deploy generalization schemes is state abstraction (sometimes also called
state aggregation/compression). A state abstraction is a mapping φ that maps the original (or prim-
itive/raw) state space S to some finite abstract state space; for brevity we use φ(S) to denote the
codomain of the mapping. Intuitively, if s(1) and s(2) are mapped to the same element, that is
φ(s(1)) = φ(s(2)), they are treated as the same state.

Given a problem with state space S and an abstraction φ, a typical usage of φ is to convert every
state s in the dataset D into φ(s), and run any tabular algorithm over D with the understanding that
the state space is φ(S). For example, if we collect a dataset that consists of tuples (s, a, r, s′), we can
view each tuple now as (φ(s), a, r, φ(s′)), and build a certainty-equivalence model over state space
φ(S). This is always doable, although there might not be a well-defined MDP with state space φ(S)

that is the groundtruth process for the converted dataset.
An obvious benefit of using state abstraction is the increase of effective sample size. Suppose we

collected a dataset with n samples per (s, a) pair, and an abstraction φ maps s(1) and s(2) to the same
abstract state x. Then, after applying the abstraction, we get 2n samples for the state-action pairs
(x, a). In certainty-equivalence, we essentially double the sample size for estimating the transition
and reward functions for a state-action pair and can enjoy lower estimation errors.

This advantage, of course, comes with a caveat, otherwise we could simply map every s ∈ S to the
same abstract state and maximize the number of samples per state. The caveat is that if we aggregate
states that are very different from each other, then we do not converge to the optimal policy even in the
limit of infinite data; in other words, we may incur high approximation errors. The trade-off between
approximation error and estimation error is a constant theme of statistical machine learning [1].

Intuitively, the approximation error is high when we aggregate states that are very different from
each other. The question is, how should we define an (approximate) equivalence notion among states?
Whether they share the same optimal action? Whether they share the same Q? values? Whether they
yield the same rewards and next-state distributions? It turns out that, these criteria define a hierar-
chy of different state abstractions, from lenient to strict. Lenient notions of abstractions yield more
generalization benefits, but may not work well with certain algorithms; strict notions of abstractions
preserve many properties of the original MDP and hence work with a wider range of algorithms, but
the generalization benefits are relatively limited.
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1 Exact abstractions

Below we define the hierarchy of abstractions. We start by considering exact abstractions that only
aggregate states that are strictly equivalent. In the next section we will relax the condition and allow
approximate equivalence.

Definition 1 (Abstraction hierarchy [2]). Given MDP M = (S,A, P,R, γ) and state abstraction φ that
operates on S, define the following types of abstractions:

1. φ is π?-irrelevant if there exists an optimal policy π?, such that ∀s(1), s(2) ∈ S where φ(s(1)) =

φ(s(2)), π?M (s(1)) = π?M (s(2)).

2. φ is Q?-irrelevant if ∀s(1), s(2) where φ(s(1)) = φ(s(2)), ∀a ∈ A, Q?M (s(1), a) = Q?M (s(2), a).

3. φ is model-irrelevant if ∀s(1), s(2) where φ(s(1)) = φ(s(2)), ∀a ∈ A, x′ ∈ φ(S),

R(s(1), a) = R(s(2), a),
∑

s′∈φ−1(x′)

P (s′|s(1), a) =
∑

s′∈φ−1(x′)

P (s′|s(2), a). (1)

Note that the condition on transition dynamics is essentially P (x′|s(1), a) = P (x′|s(2), a). It will
also be convenient to define a |φ(S)| × |S|matrix Φ, where

Φ(x, s) = I[φ(s) = x].

So ΦP (s, a) collapses the transition distribution over S to a distribution over φ(S), and the
condition on transition dynamics can be rewritten as: ΦP (s(1), a) = ΦP (s(2), a).

The following property of the hierarchy shows that π?-irrelevance is the most lenient and model-
irrelevance is the most strict.

Theorem 1 (Theorem 2 of [2]1). Model-irrelevance impliesQ?-irrelevance, which further implies π?-irrelevance.

The proof is deferred to Section 2.

1.1 Model-irrelevance

Among the 3 notions of abstractions,Q?-irrelevance and π?-irrelevance are relatively straightforward.
The definition of model-irrelevance, however, can be a litte counter-intuitive. So in this subsection
we will try to develop this notion from scratch and see why the existing definition makes sense.

A naive condition A criterion that we may naturally come up with is the following: ∀s(1), s(2) where
φ(s(1)) = φ(s(2)), ∀a ∈ A, s′ ∈ S,

R(s(1), a) = R(s(2), a), P (s′|s(1), a) = P (s′|s(2), a). (2)

So essentially we ask that s(1) and s(2) to be aggregated only when they have the same rewards and
the same transition distributions over raw states for all actions. This makes intuitive sense and in fact
it is a sufficient condition for Eq.(1). So why don’t we use this criterion instead?

1Li et al. [2] also included two additional types of abstractions as well as the raw state representation in the hierarchy
theorem, which are omitted here.
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The problem is that the criterion is too strict. Here is an example: Let M be an MDP with x ∈ X
being its state, and C be a Markov chain with z ∈ Z being its state. Now we augment M into a new
MDP M ′ with state space X × Z , and we use (x, z) to denote its state. The reward function of M ′ is
the same as M , in the sense that the z component of the augmented state is ignored. For transition,
the x component evolves according to the transition dynamics of M (which depends on actions), and
the z component evolves according to that of C.

It is obvious from the construction that M ′ is essentially equivalent to M and the z component is
useless and should be ignored. In other words, a state abstraction φ : (x, z) 7→ x is a perfect choice for
M ′ and we want our model-irrelevance condition to accommodate φ. Unfortunately, upon examining
Eq.(2) for φ, we find that as long as C has state-dependent transitions (i.e., C is a not an i.i.d. process),
φ will not satisfy Eq.(2) in general. In contrast, such an example is perfectly accomodated by Eq.(1),
since it compares the distributions from two state action pairs after integrating out the factor that is
believed to be irrelevant.

Bisimulation can handle irrelevant factors in more general situations than the above example:
Even if z′ depends on z, x, a, and even x′, as long as x’s evolution does not depend on z and reward
only depends on x and a, ignoring z yields bisimulation. (In fact this factorization view is both a
sufficient and necessary condition, therefore an alternative definition, of bisimulation: I claim that we
can always induce such a factorization of raw state representation from a bisimulation φ, such that φ
simply drops the irrelvant part. Why? Hint: φ(s) is the relevant factor, and the remaining information
in s is the irrelevant factor; you can verify from Eq.(1).)

Bibliographical Remarks and Discussions In RL literature, the notion of model-irrelevance was
originally introduced as bisimulations [3], and was later generalized to MDP homomorphisms to handle
action aggregation and permutation [4].

While model-irrelevance is the most strict notion in the abstraction hierarchy, it also secures the
success of almost any tabular RL algorithm: given model-irrelevant φ, it is fundamentally impossible
to distinguish between two datasets, one drawn from an abstract MDP Mφ that is a perfect compres-
sion of the original MDP M (the spec of this MDP is implicitly given in Equation 1), and the other
drawn from the original MDP and converted using φ ((s, a, r, s′) → (φ(s), a, r, φ(s′))); for the pur-
pose of analysis we can simply treat the algorithm as if it were run in Mφ, and any guarantee for the
algorithm automatically extends.

On the other hand, if φ is Q?-irrelevant, the compression does not preserve rewards or dynamics
in general. While some tabular algorithms can still be applied and their guarantees extend (e.g.,
Q-learning), these extensions are not automatic and need new analyses (see e.g., Section 8.2.3 in [5]).
When it comes to π?-irrelevance, it is known that value-based and model-based algorithms may break
down [6]; only policy search methods which directly optimize the return over a policy class can retain
guarantees due to their robustness to agnosticity [7].

A couple of final remarks:

• Given the MDP specification, there is a bisimulation that is a common refinement of all other
bisimulations (i.e., a minimal bisimulation uniquely exists; see proof at the end of this sec-
tion), but finding it is an NP-hard computation problem [3] (and so is finding the minimal
ε-approximate bisimulation, which will be introduced in the next section).
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• Abstractions are also useful in planning since it reduces the effective size of the state space and
hence computational complexity. In this case, model-irrelevance has an advantage over the
other two types of abstractions, since it can be checked without performing planning. See [8] for
an analogy of this situation in the learning setting.

• There is an RKHS view of Eq.(1): An abstraction φ induces a space of piece-wise constant func-
tions over S, denoted as Fφ. Two states are equivalent if their transition distributions (for each
action) have the same RKHS embeddings in Fφ; in other words, a kernel two sample test using
Fφ will not be able to detect the difference between the two distributions [9].

• Our next topic will be fitted value iteration with generic function approximator, and both tabu-
lar methods and abstractions are its special cases. There we will see that Q?-irrelevance corre-
sponds to a standard, supervised learning-type realizability assumption, and model-irrelevance
implies closedness of the function class under Bellman operator.

Uniqueness of coarsest bisimulation

Proof. We prove by showing that for any bisimulations φ1 and φ2 of M , their common coarsening is
also a bisimulation, denoted as φ12. We define φ12 by giving its equivalence criterion: for any s(1) and
s(2), φ12(s(1)) = φ12(s(1)) if and only if the two states are equivalent under either φ1 or φ2. Now we
verify that φ12 is bisimulation. The reward condition is obviously satisfied, so it remains to check the
transition condition.

Due to symmetry we consider any two states such that φ1(s(1)) = φ1(s(2)). For any y′ ∈ φ12(S),

P (y′|s(1), a) =
∑

s′∈φ−1
12 (y′)

P (s′|s(1), a)

=
∑

x′∈φ1(φ
−1
12 (y′))

∑
s′∈φ−1

1 (x′)
⋂
φ−1
12 (y′)

P (s′|s(1), a)

=
∑

x′∈φ1(φ
−1
12 (y′))

∑
s′∈φ−1

1 (x′)

P (s′|s(1), a) (φ−11 (x′) is always entirely inside φ−112 (y′))

=
∑

x′∈φ1(φ
−1
12 (y′))

∑
s′∈φ−1

1 (x′)

P (s′|s(2), a) (φ1(s(1)) = φ1(s(2)))

= P (y′|s(2), a).

On the second line, φ1(φ−112 (y′)) is a set of abstract states in φ1(S), formed by mapping each element
of φ−112 (y′) with φ1 (recall that a set does not contain duplicate elements). The next step follows from
the fact that any equivalence class in S induced by φ12 can always be partitioned into disjoint subsets,
where each subset is a complete equivalence class under φ1. Therefore, when we calculate P (y′|s(1), a),
we can first sum over each smaller equivalence class under φ1, and those probabilities will be the same
for s(1) and s(2) as these two states are equivalent under φ1 and the smaller equivalence classes are
complete. As a consequence, the outer sum is also equal, and the result follows.
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2 Approximate abstractions

In practice, exact abstractions are hard to find and verify, so we want our theory to handle approxi-
mate abstractions.

Definition 2 (lifting). For any function f that operates on φ(S), let [f ]M denote its lifted version,
which is a function over S, defined as [f ]M (s) := f(φ(s)). Similarly we can also lift a state-action
value function. Lifting a real-valued function f over states can also be expressed in vector form:
[f ]M = Φ>f .

Definition 3 (Approximate abstractions). Given MDPM = (S,A, P,R, γ) and state abstraction φ that
operates on S, define the following types of abstractions:

1. φ is an επ? -approximate π?-irrelevant abstraction, if there exists an abstract policy π : φ(S)→ A,
such that ‖V ?M − V

[π]M
M ‖∞ ≤ επ? .

2. φ is an εQ? -approximate Q?-irrelevant abstraction if there exists an abstract Q-value function
f : φ(S)×A → R, such that ‖[f ]M −Q?M‖∞ ≤ εQ? .

3. φ is an (εR, εP )-approximate model-irrelevant abstraction if for any s(1) and s(2) where φ(s(1)) =

φ(s(2)), ∀a ∈ A,

|R(s(1), a)−R(s(2), a)| ≤ εR,
∥∥∥ΦP (s(1), a)− ΦP (s(2), a)

∥∥∥
1
≤ εP . (3)

Note that Definition 1 is recovered when all approximation errors are set to 0.
The following theorem characterizes the relationship between the 3 types of approximate abstrac-

tions, with Theorem 1 as a direct corollary.

Theorem 2. (1) If φ is an (εR, εP )-approximate model-irrelevant abstraction, then φ is also an approximate
Q?-irrelevant abstraction with approximation error εQ? = εR

1−γ + γεPRmax

2(1−γ)2 .
(2) If φ is an εQ? -approximateQ?-irrelevant abstraction, then φ is also an approximate π?-irrelevant abstraction
with approximation error επ? = 2εQ?/(1− γ).

A useful lemma for proving Theorem 2:

Lemma 3. Let φ be an (εR, εP )-approximate model-irrelevant abstraction of M . Given any distributions
{px : x ∈ φ(S)} where each px is supported on φ−1(x), define Mφ = (φ(S),A, Pφ, Rφ, γ), where Rφ(x, a) =

Es∼px [R(s, a)], and Pφ(x′|x, a) = Es∼px [P (x′|s, a)]. Then for any s ∈ S, a ∈ A,

|Rφ(φ(s), a)−R(s, a)| ≤ εR, ‖Pφ(x, a)− ΦP (s, a)‖1 ≤ εP .

Proof. We only prove for the transition part; the reward part follows from a similar (and easier) argu-
ment. Consider any fixed x and a. Let qs := ΦP (s, a). By the definition of approximate bisimulation
we have ‖qs(1) − qs(2)‖1 ≤ εP for any φ(s(1)) = φ(s(2)). The LHS of the claim on transition function is
(let x := φ(s))

‖Pφ(x, a)− ΦP (s, a)‖1
=
∥∥∥ ∑
s̃∈φ−1(x)

px(s̃)qs̃ − qs
∥∥∥
1

=
∥∥∥ ∑
s̃∈φ−1(x)

px(s̃)(qs̃ − qs)
∥∥∥
1

≤
∑

s̃∈φ−1(x)

∥∥∥px(s̃)(qs̃ − qs)
∥∥∥
1
≤

∑
s̃∈φ−1(x)

px(s̃)εP = εP .
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Proof of Theorem 2. Claim (2) follows directly from Lemma 4 in our first note, by using π[f ]M as the
approximately optimal policy. It remains to prove Claim (1).

Define Mφ to be an abstract model as in Lemma 3 w.r.t. arbitrary distributions {px}. We will use
Q?Mφ

as the f function in the definition of approximate Q?-irrelevance, and upper bound ‖[Q?Mφ
]M −

Q?M‖∞ as:∥∥∥[Q?Mφ
]M −Q?M

∥∥∥
∞
≤ 1

1− γ

∥∥∥[Q?Mφ
]M − T [Q?Mφ

]M

∥∥∥
∞

=
1

1− γ

∥∥∥[TMφ
Q?Mφ

]M − T [Q?Mφ
]M

∥∥∥
∞
.

For any (s, a),

|([TMφ
Q?Mφ

]M )(s, a)− (T [Q?Mφ
]M )(s, a)|

= |(TMφ
Q?Mφ

)(φ(s), a)− (T [Q?Mφ
]M )(s, a)|

= |Rφ(φ(s), a) + γ〈Pφ(φ(s), a), V ?Mφ
〉 −R(s, a)− γ〈P (s, a), [V ?Mφ

]M 〉|

≤ εR + γ
∣∣∣〈Pφ(φ(s), a), V ?Mφ

〉 − 〈P (s, a),Φ>V ?Mφ
〉
∣∣∣

= εR + γ
∣∣∣〈Pφ(φ(s), a), V ?Mφ

〉 − 〈ΦP (s, a), V ?Mφ
〉
∣∣∣ (*)

≤ εR + γεP ‖V ?Mφ
− Rmax

2(1−γ)1‖∞

≤ εR + γεPRmax/(2(1− γ)).

In step (*), we notice that [V ?Mφ
]M is piece-wise constant, so when we take its dot-product with P (s, a),

we essentially first collapse P (s, a) onto φ(S) (which is done by the Φ operator) and then take its dot-
product with V ?Mφ

. The rest of the proof is similar to that of the simulation lemma.

On monotonicity of approximation errors When we refine an abstraction φ, do we get better ap-
proximation? In fact, approximation errors are only monotone for π?- and Q?-irrelevance, but can
be non-monotone for bisimulation. The former types of definitions are very much like realizability
assumptions in supervised learning, and approximation errors monotonically decrease when func-
tion spaces get richer. For bisimulation, we will see later when we study Fitted Q-Iteration, that the
criterion of bisimulation is essentially saying that the function space must be closed under Bellman
update, and having more functions in the space can possibly break a closedness property.2

3 Bounding the loss of abstract models

The previous sections define different notions abstractions and their relationships. But what happens
when we actually build a model using any type of abstractions and plan using the model? Is the
output policy near-optimal? For this section we focus on approximation errors only, and will discuss
estimation errors, that is, finite sample effects, in the next section.

3.1 φ is an approximate bisimulation

If we are given an (εR, εP )-approximate bisimulation abstraction and construct an abstract model Mφ

as in Lemma 3, how lossy is π?Mφ
? By applying both claims in Theorem 2 we obtain 2εR

(1−γ)2 + γεPRmax

(1−γ)3 ,

2My collaborators and I also referred to it as“completeness” in our recent paper [10].
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which turns out to be loose. Here we provide a tighter analysis.

Theorem 4. Let φ be an (εR, εP )-approximate model-irrelevant abstraction ofM , andMφ be an abstract model
defined as in Lemma 3 with arbitrary distributions {px}, then∥∥∥∥V ?M − V [π?Mφ

]M

M

∥∥∥∥
∞
≤ 2εR

1− γ
+
γεPRmax

(1− γ)2
.

Proof. We first prove that for any abstract policy π : φ(S)→ A,∥∥∥[V πMφ
]M − V [π]M

M

∥∥∥
∞
≤ εR

1− γ
+
γεPRmax

2(1− γ)2
. (4)

To prove this, first recall the contraction property of policy-specific Bellman update operator for state-
value functions, which implies that∥∥∥[V πMφ

]M − V [π]M
M

∥∥∥
∞
≤ 1

1− γ

∥∥∥[V πMφ
]M − T [π]M [V πMφ

]M

∥∥∥
∞

=
1

1− γ

∥∥∥[T πMφ
V πMφ

]M − T [π]M [V πMφ
]M

∥∥∥
∞
.

For notation simplicity let Rπ
′
(s) := R(s, π′(s)) and Pπ

′
(s) := P (s, π′(s)). For any s ∈ S,

|[T πMφ
V πMφ

]M (s)− T [π]M [V πMφ
]M (s)|

= |(T πMφ
V πMφ

)(φ(s))− T [π]M [V πMφ
]M (s)|

= |Rπφ(φ(s)) + γ〈Pπφ (φ(s)), V πMφ
〉 −R[π]M (s)− γ〈P [π]M (s), V

[π]M
M 〉|

≤ εR + γ|〈Pπφ (φ(s)), V πMφ
〉 − 〈P [π]M (s), [V πMφ

]M 〉|

= εR + γ
∣∣∣〈Pπφ (φ(s)), V πMφ

〉 − 〈ΦP [π]M (s), V πMφ
〉
∣∣∣

≤ εR +
γεPRmax

2(1− γ)
.

Now that we have a uniform upper bound on evaluation error, it might be attempting to argue that
we under-estimate π?M and over-estimate π?Mφ

at most this much, hence the decision loss is twice the
evaluation error. This argument does not apply here because π?M cannot be necessarily expressed as
a lifted abstract policy when φ is not an exact bisimulation!

Instead we can use the following argument: for any s ∈ S,

V ?M (s)− V
[π?Mφ

]M

M (s) = V ?M (s)− V ?Mφ
(φ(s)) + V ?Mφ

(φ(s))− V
[π?Mφ

]M

M (s)

≤
∥∥∥Q?M − [Q?Mφ

]M

∥∥∥
∞

+

∥∥∥∥[V
π?Mφ
Mφ

]M − V
[π?Mφ

]M

M

∥∥∥∥
∞
.

Here both terms can be bounded by εR
1−γ + γεPRmax

2(1−γ)2 but for different reasons: the bound applies to the
first term due to Claim (1) of Theorem 2, and applies to the second term through Eq.(4) as π?Mφ

is an
abstract policy.

3.2 φ is approximately Q?-irrelevant

When φ is an approximate Q?-irrelevant abstraction with low approximation error, building a model
based on φmay not seem a good idea, as the transitions and rewards for states with similiarQ?-values
may be drastically different, and the parameters of Mφ (as in Lemma 3) may not be meaningful at all.
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Perhaps surprisingly, we can show that Mφ produces a near-optimal Q?-function hence a near-
optimal policy.3

Theorem 5. Let φ be an εQ? -approximate Q?-irrelevant abstraction for M . Then, for Mφ constructed as in
Lemma 3 with arbitrary distributions {px}, we have ‖[Q?Mφ

]M −Q?M‖∞ ≤ 2εQ?/(1− γ).

Exact Q?-irrelevance To develop intuition, let’s see what happens when φ is an exact Q?-irrelevant
abstraction: we can prove that [Q?Mφ

]M = Q?M , despite that the dynamics and rewards in Mφ “do not
make sense”. In particular, we know that for any s(1) and s(2) aggregated by φ, for any a ∈ A,

R(s(1), a) + γ〈P (s(1), a), V ?M 〉 = Q?(s(1), a) = Q?(s(2), a) = R(s(2), a) + γ〈P (s(2), a), V ?M 〉.

This equation tells us that, although φ aggregates states that can have very different rewards and
dynamics, they at least share one thing: the Bellman operator updates Q?M in exactly the same way at
s(1) and s(2) (for any action).

Let [Q?M ]φ(x, a) = Q?M (s, a) for any s ∈ φ−1(x); note that the notation [·]φ can only be applied to
functions that are piece-wise constant under φ. We now show that [Q?M ]φ is the fixed point of TMφ

,
which proves the claim. This is because, for any x ∈ φ(S), a ∈ A, let s be any state in φ−1(x):

(TMφ
[Q?M ]φ)(x, a) = Rφ(x, a) + γ〈Pφ(x, a), [V ?M ]φ〉

=
∑

s∈φ−1(x)

px(s) (R(s, a) + γ〈ΦP (s, a), [V ?M ]φ))

=
∑

s∈φ−1(x)

px(s) (R(s, a) + γ〈P (s, a), V ?M ))

=
∑

s∈φ−1(x)

px(s) [Q?M ]φ(x, a) = [Q?M ]φ(x, a).

The approximate case The more general case is much trickier, as Q?M is not piece-wise constant
when φ is not exactly Q?-irrelevant, so we cannot apply TMφ

to it.
To get around this issue, define a new MDP M ′φ = (S,A, P ′φ, R′φ, γ), with

R′φ(s, a) = Es̃∼pφ(s) [R(s̃, a)], P ′φ(s′|s, a) = Es̃∼pφ(s) [P (s′|s̃, a)].

Recall that {px} are a set of arbitrary distributions and we use them as weights for defining Mφ. The
model here, Mφ′ , also combines parameters from aggregated states, but is defined over the primitive
state space. This seemingly crazy model has two important properties: (1) Its optimal Q-value func-
tion coincides with that of Mφ (after lifting), and (2) It’s defined over S so we can apply its Bellman
operator to Q?M .

3In fact, this is why the guarantee of Delayed Q-learning, a PAC-MDP algorithm, can be extended to Q?-irrelevant abstrac-
tions; see Section 8.2.3 of Lihong Li’s thesis [5].
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We first prove that [Q?Mφ
]M = Q?M ′φ

, by showing that TM ′φ [Q?Mφ
]M = [Q?Mφ

]M :

(TM ′φ [Q?Mφ
]M )(s, a) = R′φ(s, a) + γ〈P ′φ(s, a), [V ?Mφ

]M 〉

=
∑

s̃:φ(s̃)=φ(s)

px(s̃)
(
R(s̃, a) + γ〈P (s̃, a), [V ?Mφ

]M

)
=

∑
s̃:φ(s̃)=φ(s)

px(s̃)R(s̃, a) +
∑

s̃:φ(s̃)=φ(s)

px(s̃)γ〈ΦP (s̃, a), V ?Mφ
〉

= Rφ(φ(s), a) + γ〈Pφ(φ(s), a), V ?Mφ
〉

= Q?Mφ
(φ(s), a) = [Q?Mφ

]M (s, a).

With this result, we have∥∥∥[Q?Mφ
]M −Q?M

∥∥∥
∞

=
∥∥∥Q?M ′φ −Q?M∥∥∥∞ ≤ 1

1− γ

∥∥∥TM ′φQ?M −Q?M∥∥∥∞ .

And

|(TM ′φQ
?
M )(s, a)−Q?M (s, a)|

= |R′φ(s, a) + γ〈P ′φ(s, a), V ?M 〉 −Q?M (s, a)|

=

∣∣∣∣∣∣
 ∑
s̃:φ(s̃)=φ(s)

px(s̃) (R(s̃, a) + γ〈P (s̃, a), V ?M 〉)

−Q?M (s, a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

s̃:φ(s̃)=φ(s)

px(s̃) (Q?M (s̃, a)−Q?M (s, a))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

s̃:φ(s̃)=φ(s)

px(s̃)(2εQ?)

∣∣∣∣∣∣ = 2εQ? .

4 Finite sample analysis

We briefly discuss the finite sample guarantees of certainty-equivalence RL after pre-processing data
using a state abstraction φ [8].

As before, we assume that the dataset, D = {Ds,a}(s,a)∈S×A, is formed by sampling rewards and
transitions from each (s, a) a number of times. Previously we made the simplification assumption
that |Ds,a| is a constant for all (s, a); here we remove this assumption and allow their sizes to vary,
for the following reason: when the primitive state space S is very large and the amount of total data
is limited, there can be many states where we don’t even have any data, so assuming constant |Ds,a|
(which is at least 1) is unrealistic in this scenario. In fact, such a scenario is exactly where abstractions
can be very useful due to their generalization effects.

In particular, the effective sample size that will enter our analysis is

nφ(D) := min
x∈φ(S),a∈A

|Dx,a|, where Dx,a :=
∑

s∈φ−1(x)

|Ds,a|.

In words, nφ(D) is the least number of samples for any abstract state-action pair. Note that even if
|Ds,a| = 0 for many (s, a), if φ aggregate states aggressively and data is relatively uniform over all
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abstract states, we may still have a reasonably large nφ(D). Our loss bound will depend on nφ(D)

and the approximation error of the representation φ, but will not incur any dependence on the sample
size of individual states (which implicitly depends on |S|).

Recall that in the note on tabular RL we studied two approaches to the finite sample analyses of
certainty-equivalence: one through maxπ ‖V πM − V πM̂‖∞ (uniform bound of policy evaluation errors)
and the other through ‖Q?M − Q?

M̂
‖. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.

Before that, we need a few more notations: Let M̂φ = (φ(S),A, P̂φ, R̂φ, γ) be the estimated model
using the abstract representation. Let Mφ = (φ(S),A, Pφ, Rφ, γ) be the following MDP:

Rφ(x, a) =

∑
s̃∈φ−1(x) |Ds̃,a|R(s, a)

|Dφ(s),a|
, Pφ(x′|x, a) =

∑
s̃∈φ−1(x) |Ds̃,a|P (x′|s, a)

|Dφ(s),a|
.

This is essentially the definition of Mφ in Lemma 3 with px(s) ∝ |Ds,a|. In words, Mφ is the “expecta-
tion” of M̂φ w.r.t. the randomness in data. If |Ds,a| gets multiplied by the same constant for all (s, a)

and goes to infinity, Mφ is what M̂φ converges to in the limit.

Bounding
∥∥∥Q?M − [Q?

M̂φ
]M

∥∥∥
∞

: We bound it by introducing an intermediate term:∥∥∥Q?M − [Q?
M̂φ

]M

∥∥∥
∞
≤
∥∥∥Q?M − [Q?Mφ

]M

∥∥∥
∞

+
∥∥∥[Q?Mφ

]M − [Q?
M̂φ

]M

∥∥∥
∞
.

We have already bounded the first term on the RHS in Theorem 2 for approximate bisimulations and
Theorem 5 for approximate Q?-irrelevant abstractions, respectively, so it remains to deal with the
second term. A few comments on this decomposition before we dive into the analysis:

1. Using terminologies from statistical learning theory, we will call the first term approximation
error, and the second term estimation error.

2. Approximation error reflects the fidelity of a representation φ to the true model M . It does not
vanish with more data. In fact, this is what we have to pay in the limit of infinite data. The finer
φ is, the better approximation we get (see more detailed discussions at the end of Section 2).

3. Estimation error reflects how fast the estimated model converges to its “expected” version. It
goes to 0 as sample size goes to infinity, and it has nothing to do with whether φ is a legit
representation for M . The coarser φ, the lower estimation error we get.

4. So here is the trade-off: to guarantee low approximation error we want a fine φ, but to guarantee
low estimation error we want a coarse φ. In general, the best balance depends on the sample
size [8].

Now let’s bound
∥∥∥[Q?Mφ

]M − [Q?
M̂φ

]M

∥∥∥
∞

, M̂φ converges to Mφ in the limit, so the second term

should go to 0 as nφ(D) goes to infinity, and the fact that φ is an inexact abstraction forM is irrelevant
here. However, we cannot argue that data in Dx,a can be viewed as if they were sampled from
Pφ(x, a), since the subsets of data from different s have independent but non-identical distributions.
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Fortunately, Hoeffding’s inequality applies to independent but non-identical distributions, and
we can leverage this property to get around the issue:∥∥∥[Q?Mφ

]M − [Q?
M̂φ

]M

∥∥∥
∞

=
∥∥∥Q?Mφ

−Q?
M̂φ

∥∥∥
∞

≤ 1

1− γ

∥∥∥Q?Mφ
− T

M̂φ
Q?Mφ

∥∥∥
∞

=
1

1− γ

∥∥∥TM̂φ
Q?Mφ

− TMφ
Q?Mφ

∥∥∥
∞
.

For each (x, a) ∈ φ(S)×A,

|(T
M̂φ
Q?Mφ

)(x, a)− (TMφ
Q?Mφ

)(x, a)|

= |R̂φ(x, a) + γ〈P̂φ(x, a), V ?Mφ
〉 −Rφ(x, a)− γ〈Pφ(x, a), V ?Mφ

〉|

=

∣∣∣∣∣∣ 1

|Dx,a|
∑

s∈φ−1(x)

∑
(r,s′)∈Ds,a

(
r + γV ?Mφ

(φ(s′))−R(s, a)− γ〈P (s, a), [V ?Mφ
]M 〉
)∣∣∣∣∣∣ .

If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ γV ?Mφ

(s′) and their expectation w.r.t. the randomness of (r, s′), so Hoeffding’s inequality
applies (although for different s ∈ φ−1(x) the random variables have non-identical distributions):
with probability at least 1− δ,

∥∥∥TM̂φ
Q?Mφ

− TMφ
Q?Mφ

∥∥∥
∞
≤ Rmax

1− γ

√
1

2nφ(D)
ln

2|φ(S)×A|
δ

.

This completes the analysis.
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