CS 542 Statistical Reinforcement Learning

Nan Jiang
What’s this course about?

• A grad-level seminar course on **theory of RL**
• with focus on sample complexity analyses
• all about proofs, some perspectives, 0 implementation
• No text book; material is created by myself (course notes)
 • Related monograph under development w/ Alekh Agarwal, Sham Kakade, and Wen Sun
• See course website for more material and references
Who should take this course?

- This course will be a good fit for you if you either
 - (A) have exposure to RL + comfortable with long mathematical derivations + interested in understanding RL from a purely theoretical perspective
 - (B) are very familiar in a related theoretical field (e.g., learning theory) and comfortable with highly abstract description of concepts / models / algorithms
- For people not in (A) or (B): I also teach CS443 RL (Sp22), which focuses less on analyses & proofs and more on algorithms & intuitions
Prerequisites

- Maths
 - Linear algebra, probability & statistics, basic calculus
 - Markov chains
 - Optional: stochastic processes, numerical analysis
 - Useful: TCS background, empirical processes and statistical learning theory, optimization, online learning

- Exposure to ML
 - e.g., CS 446 Machine Learning
 - Experience with RL
Coursework

• Some readings after/before class
• 3~4 graded homeworks to help digest certain material.
 • about 40% of final grades (rest is project)
• Course project (work on your own)
 • Baseline: reproduce theoretical analysis in existing papers
 • Advanced: identify an interesting/challenging extension to the paper and explore the novel research question yourself
 • Or, just work on a novel research question (must have a significant theoretical component; need to discuss with me)
Course project (cont.)

• See list of references and potential topics on website
 • To be updated this semester

• You will need to submit:
 • A brief proposal (~1/2 page). Tentative deadline: end of Oct
 • what’s the topic and what papers you plan to work on
 • why you choose the topic: what interest you?
 • which aspect(s) you will focus on?
 • Final report: clarity, precision, and brevity are greatly valued. More details to come…

• All docs should be in \texttt{pdf}. Final report should be prepared using \texttt{LaTeX}.
Contents of the course

• many important topics in RL will not be covered in depth (e.g., TD). Read more (e.g., Sutton & Barto book) if you want to get a more comprehensive view of RL

• the other opportunity to learn what’s not covered in lectures is the project, as potential topics for projects are much broader than what’s covered in class.
Logistics

• Course website: http://nanjiang.cs.illinois.edu/cs542/
 • logistics, links to slides/notes, and resources (e.g.,
 textbooks to consult, related courses)
• Canvas for Q&A and announcements: see link on website.
 • Please pay attention to Canvas announcements
 • Auditing students: please contact TA to be added to
 Canvas
• Recording: published on MediaSpace (link on website)
• Time: Wed & Fri 2-3:15pm.
• TA: Jinglin Chen (jinglinc), Tengyang Xie (tx10)
• Office hours: TBA
Introduction to MDPs and RL
Reinforcement Learning (RL) Applications

[Levine et al’16] [Ng et al’03] [Singh et al’02] [Lei et al’12]
[Mandel et al’16] [Tesauro et al’07] [Mnih et al’15][Silver et al’16]
Greedy is suboptimal due to delayed effects

Need **long-term planning**
Shortest Path

A graph with nodes labeled s_0, b, c, d, f, g and edges labeled with weights. The graph shows a network of connections with specific weights on each edge.
Stochastic Shortest Path

Markov Decision Process (MDP)

State

Action

Transition distribution
Stochastic Shortest Path

Bellman Equation
\[V^*(c) = \min\{4 + 0.7 \times V^*(d) + 0.3 \times V^*(e), 2 + V^*(e)\} \]

Greedy is suboptimal due to delayed effects.

Need long-term planning.
Stochastic Shortest Path via trial-and-error
Stochastic Shortest Path
via trial-and-error

Trajectory 1: $s_0 \rightarrow c \rightarrow d \rightarrow g$

Trajectory 2:
How many trajectories do we need to compute a near-optimal policy?

Model-based RL

Trajectory 1: $s_0 \xrightarrow{c} d \xrightarrow{g}$

Trajectory 2: $s_0 \xrightarrow{c} e \xrightarrow{f} g$

…
How many trajectories do we need to compute a near-optimal policy?

- Assume states & actions are visited uniformly
- \#trajectories needed \(\leq n \cdot (\#\text{state-action pairs}) \)

#samples needed to estimate a multinomial distribution

Nontrivial! Need exploration
Video game playing

reward \(r_t = R(s_t, a_t) \)

state \(s_t \in S \)

policy \(\pi: S \rightarrow A \)

action \(a_t \in A \)

e.g., random spawn of enemies

transition dynamics \(P(\cdot | s_t, a_t) \)

(unknown)

objective: maximize \(\mathbb{E} \left[\sum_{t=1}^{H} r_t | \pi \right] \)

\(H = 5 \)

\(H = 10 \)

\(\gamma = 0.8 \)

\(\gamma = 0.9 \)
Need generalization
Value function approximation
Video game playing

Find θ s.t.

$$f(x; \theta) \approx r + \gamma \cdot E_{x'}[f(x'; \theta)]$$

state features x

state features x'

Need generalization

Value function approximation

$$f(\cdot; \theta) \approx V^*$$
Adaptive medical treatment

- State: diagnosis
- Action: treatment
- Reward: progress in recovery
A Machine Learning view of RL
Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

- Computer Science
- Economics
- Mathematics
- Engineering
- Neuroscience
- Psychology
- Machine Learning
- Optimal Control
- Reinforcement Learning
- Operations Research
- Classical/Operant Conditioning
- Bounded Rationality
- Reward System

slide credit: David Silver
Supervised Learning

Given \{ (x^{(i)}, y^{(i)}) \}, learn \(f : x \mapsto y \)

- Online version: for round \(t = 1, 2, \ldots \), the learner
 - observes \(x^{(t)} \)
 - predicts \(\hat{y}^{(t)} \)
 - receives \(y^{(t)} \)
- Want to maximize # of correct predictions
- e.g., classifies if an image is about a dog, a cat, a plane, etc. (multi-class classification)
- Dataset is fixed for everyone
- “Full information setting”
- Core challenge: generalization
Contextual bandits

For round $t = 1, 2, \ldots$, the learner

- Given $x^{(t)}$, chooses from a set of actions $a^{(t)} \in A$
- Receives reward $r^{(t)} \sim R(x^{(t)}, a^{(t)})$ (i.e., can be random)
- Want to maximize total reward
- You generate your own dataset $\{(x^{(t)}, a^{(t)}, r^{(t)})\}$!
- e.g., for an image, the learner guesses a label, and is told whether correct or not (reward = 1 if correct and 0 otherwise). Do not know what’s the true label.
- e.g., for an user, the website recommends a movie, and observes whether the user likes it or not. Do not know what movies the user really want to see.
- “Partial information setting”
Contextual bandits

Contextual Bandits (cont.)

- Simplification: no x, Multi-Armed Bandits (MAB)
- Bandit is a research area by itself. we will not do a lot of bandits but may go through some material that have important implications on general RL (e.g., lower bounds)
RL

For round $t = 1, 2, \ldots,$

- For time step $h=1, 2, \ldots, H$, the learner
 - Observes $x_h^{(t)}$
 - Chooses $a_h^{(t)}$
 - Receives $r_h^{(t)} \sim R(x_h^{(t)}, a_h^{(t)})$
 - Next $x_{h+1}^{(t)}$ is generated as a function of $x_h^{(t)}$ and $a_h^{(t)}$ (or sometimes, all previous x’s and a’s within round t)

- Bandits + “Delayed rewards/consequences”

- The protocol here is for episodic RL (each t is an episode).
Two types of scenarios in RL research

1. Solving a large **planning** problem using a **learning** approach
 - e.g., AlphaGo, video game playing, simulated robotics
 - Transition dynamics (Go rules) known, but too many states
 - Run the simulator to collect data

2. Solving a **learning** problem
 - e.g., adaptive medical treatment
 - Transition dynamics unknown (and too many states)
 - Interact with the environment to collect data
Two types of scenarios in RL research

1. Solving a large **planning** problem using a **learning** approach
2. Solving a **learning** problem

- #2 is less studied & many challenges. Data (real-world interactions) is highest priority. Computation second.
- Even for #1, sample complexity lower bounds computational complexity, so sample efficiency is also important.
MDP Planning
Infinite-horizon discounted MDPs

An MDP $M = (S, A, P, R, \gamma)$

- State space S.
- Action space A.
- Transition function $P : S \times A \rightarrow \Delta(S)$. $\Delta(S)$ is the probability simplex over S, i.e., all non-negative vectors of length $|S|$ that sums up to 1
- Reward function $R : S \times A \rightarrow \mathbb{R}$. (deterministic reward function)
- Discount factor $\gamma \in [0,1)$
- The agent starts in some state s_1, takes action a_1, receives reward $r_1 \sim R(s_1, a_1)$, transitions to $s_2 \sim P(s_1, a_1)$, takes action a_2, so on so forth — the process continues indefinitely

We will only consider discrete and finite spaces in this course.
Value and policy

• Want to take actions in a way that maximizes value (or return):

\[\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right] \]

• This value depends on where you start and how you act

• Often assume boundedness of rewards: \(r_t \in [0, R_{\text{max}}] \)

• What’s the range of \(\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right] \)? \([0, \frac{R_{\text{max}}}{1 - \gamma}] \)

• A (deterministic) policy \(\pi: S \rightarrow A \) describes how the agent acts: at state \(s_t \), chooses action \(a_t = \pi(s_t) \).

• More generally, the agent may choose actions randomly (\(\pi: S \rightarrow \Delta(A) \)), or even in a way that varies across time steps (“non-stationary policies”)

• Define \(V^\pi(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \bigg| s_1 = s, \pi \right] \)
Bellman equation for policy evaluation

\[V^\pi(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s, \pi \right] \]

\[= \mathbb{E} \left[r_1 + \sum_{t=2}^{\infty} \gamma^{t-1} r_t \mid s_1 = s, \pi \right] \]

\[= R(s, \pi(s)) + \sum_{s' \in S} P(s' \mid s, \pi(s)) \mathbb{E} \left[\gamma \sum_{t=2}^{\infty} \gamma^{t-2} r_t \mid s_1 = s, s_2 = s', \pi \right] \]

\[= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s', \pi \right] \]

\[= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^\pi(s') \]

\[= R(s, \pi(s)) + \gamma \langle P(\cdot \mid s, \pi(s)), V^\pi(\cdot) \rangle \]
Bellman equation for policy evaluation

\[V^\pi(s) = R(s, \pi(s)) + \gamma \langle P(\cdot | s, \pi(s)), V^\pi(\cdot) \rangle \]

Matrix form: define

- \(V^\pi \) as the \(|S|\times1\) vector \([V^\pi(s)]_{s \in S}\)
- \(R^\pi \) as the vector \([R(s, \pi(s))]_{s \in S}\)
- \(P^\pi \) as the matrix \([P(s' | s, \pi(s))]_{s \in S, s' \in S}\)

\[
V^\pi = R^\pi + \gamma P^\pi V^\pi \\
(I - \gamma P^\pi)V^\pi = R^\pi \\
V^\pi = (I - \gamma P^\pi)^{-1} R^\pi
\]

This is always invertible. Proof?
State occupancy

\[(1 - \gamma) \cdot (I - \gamma P^\pi)^{-1}\]

Each row (indexed by \(s\)) is the normalized discounted state occupancy \(d^\pi, s\), whose \((s')\)-th entry is

\[d^\pi, s(s') = (1 - \gamma) \cdot \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{I}[s_t = s'] \mid s_1 = s, \pi \right]

- \((1 - \gamma)\) is the normalization factor so that the matrix is row-stochastic.

- \(V^\pi(s)\) is the dot product between \(d^\pi, s / (1 - \gamma)\) and reward vector

- Can also be interpreted as the value function of indicator reward function
Optimality

- For infinite-horizon discounted MDPs, there always exists a stationary and deterministic policy that is optimal for all starting states simultaneously
 - Proof: Puterman’94, Thm 6.2.7 (reference due to Shipra Agrawal)
- Let π^* denote this optimal policy, and $V^* := V^{\pi^*}$
- Bellman Optimality Equation:
 \[
 V^*(s) = \max_{a \in A} \left(R(s, a) + \gamma \mathbb{E}_{s' \sim p(s, a)} \left[V^*(s') \right] \right)
 \]
- If we know V^*, how to get π^*?
- Easier to work with Q-values: $Q^*(s, a)$, as $\pi^*(s) = \arg\max_{a \in A} Q^*(s, a)$
 \[
 Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim p(s, a)} \left[\max_{a' \in A} Q^*(s', a') \right]
 \]
Homework 0

• uploaded on course website
• help understand the relationships between alternative MDP formulations
• more like readings w/ questions to think about
• no need to submit