Tabular RL for Value Prediction

Reading: Algs for RL (Szepesvári), Sec 3.1
The Value Prediction Problem

• Given π, want to learn V^π or Q^π

• Also called policy evaluation, but much more difficult than estimating the expected return under initial state distribution (which is a scalar; here we want to learn a whole function)

• Why useful? Recall that if we know how to compute Q^π, we can run policy iteration
 • also useful in many other scenarios; will see examples later

• On-policy learning: data is generated by π

• Off-policy learning: data is generated by some other policy

• Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)

• When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)
Monte-Carlo Value Prediction

- If we can roll out trajectories from any starting state that we want, here is a simple procedure
- For each \(s \), roll out \(n \) trajectories using policy \(\pi \)
 - For episodic tasks, roll out until termination
 - For continuing tasks, roll out to a length (typically \(H = O(1/(1 - \gamma)) \)) such that omitting the future rewards has minimal impact (“small truncation error”)
 - Let \(\hat{V}^\pi(s) \) (will just write \(V(s) \)) be the average discounted return
 - also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 - Keep generating trajectories until we have enough data points for each starting state
Implementing MC in an online manner

• The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
• Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
• For $i = 1, 2, \ldots$
 • Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return
 • Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$
 • Otherwise, $V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)} V(s_i) + \frac{1}{n(s_i)} G_i$
• Verify: at any point, $V(s)$ is always the MC estimation using trajectories starting from s available so far
Focus on a particular state s_i. In this case, correspond to s_i in the
notation of the state distribution of $O(s_0) \Rightarrow O(s)$.

\[
\begin{align*}
\mathbb{I}(s) = \begin{cases}
3 & (s_i, q_i) + (s_i, q_i) \\
2 & (s_i, q_i) + (s_i, q_i) \\
1 & (s_i, q_i) + (s_i, q_i)
\end{cases}
\end{align*}
\]
Implementing MC in an online manner

- More generally, $V(s_i) \leftarrow (1 - \alpha)V(s_i) + \alpha G_i$
 - α is known as the step size or the learning rate
 - in theory, convergence require sum of α goes to infinity while sum of α^2 stays finite; in practice, constant small α is often used
 - G_i is often called “the target”
 - The expected value of the target is what we want to update our estimate to, but since it’s noisy, we only move slightly to it
- Alternative expression: $V(s_i) \leftarrow V(s_i) + \alpha(G_i - V(s_i))$
 - Moving the estimate in the direction of error (= target - current)
- Can be interpreted as stochastic gradient descent
 - If we have i.i.d. real random variables v_1, v_2, \ldots, v_n, the average is the solution of the least-square optimization problem:
 $\min_v \frac{1}{2n} \sum_{i=1}^{n} (v - v_i)^2$
 - Stochastic gradient: $v - v_i$ (for uniformly random i)
\[V_1, V_2, \ldots, V_n \]
\[
\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} (V - V_i)^2 = L(\theta) = \sum_{i=1}^{n} l_i(\theta)
\]

GD: \[\theta \leftarrow \theta - \alpha \cdot \nabla_{\theta} L(\theta) \]

SGD: sample \(i \sim \{1, \ldots, n\} \)

\[\theta \leftarrow \theta - \alpha \cdot \nabla_{\theta} l_i(\theta) \]

\[\nabla_{\theta} l_i(\theta) = \frac{d}{d\theta} \left(\frac{1}{2n} (V - V_i)^2 \right) = \frac{1}{2n} \cdot 2(V - V_i) \]

\[= \frac{1}{n} (V - V_i). \]

\[\theta \leftarrow \theta - \alpha \cdot \frac{1}{n} (V - V_i). \]
Every-visit Monte-Carlo

• Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?

• Let’s say we only have one single long trajectory
 \(s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots \)

 • (By “long trajectory”, we mean trajectory length >> effective horizon \(H = O(1/(1 - \gamma)) \))

• On-policy: \(a_t \sim \pi(s_t) \), where \(\pi \) is the policy we want to evaluate

• Algorithm: for each \(s \), find all \(t \) such that \(s_t = s \), calculate the discounted sum of rewards between time step \(t \) and \(t+H \), and take average over them as \(V(s_i) \)

• Convergence requires additional assumption: the Markov chain induced by \(\pi \) is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity
Every-visit Monte-Carlo

• You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
• i.e., obtain a random return for each state visited on the trajectory
• What if a state occurs multiple times on a trajectory?
 • Approach 1: only the 1st occurrence is used (“first-visit MC”)
 • Approach 2: all of them are used (“every-visit MC”)

Alternative Approach: TD(0)

• Again, suppose we have a single long trajectory \(s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots\) in a continuing task

• TD(0): for \(t = 1, 2, \ldots\),

\[
V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t))
\]

• TD = temporal difference

• \(r_t + \gamma V(s_{t+1}) - V(s_t)\): “TD-error”

• The same structure as the MC update rule, except that we are using a different target here: \(r_t + \gamma V(s_{t+1})\)

• Often called “bootstrapped” target: the target value depends on our current estimated value function \(V\)

• Conditioned on \(s_t\), what is the expected value of the target (taking expectation over the randomness of \(r_t, s_{t+1}\))?

• It’s \((T^{\pi}V)(s_t)\)
General Update Rule:

\[V(S_t) \leftarrow V(S_t) + \alpha \left(\overline{\text{target}} - V(S_t) \right) \]

Consequence: \(V \) move towards \(\mathbb{E} \left[\overline{\text{target}} \mid S_t \right] \).

MC:

\[\overline{\text{target}} = \sum_{t'=t}^{t+H} y^{t'-t} r_{t'} \]

\[\mathbb{E} \left[\overline{\text{target}} \mid S_t \right] \approx V^\pi(S_t) \text{ (up to truncation error)} \]

TD(0):

\[\overline{\text{target}} = V_t + \gamma V(S_{t+1}) \]

"one-step bootstrap target"

\[\mathbb{E} \left[\overline{\text{target}} \mid S_t \right] = \mathbb{R}(S_t) + \gamma \mathbb{E}_{S_{t+1} \sim P(S_t, a(S_t))} \left[V(S_{t+1}) \right] \]

\[= (J^\pi V)(S_t). \]
Understanding TD(0)

- \(V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t)) \)
- Imagine a slightly different procedure
 - Initialize \(V \) and \(V' \) arbitrarily
 - Keep running \(V'(s_t) \leftarrow V'(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V'(s_t)) \)
 - Note that only \(V' \) is being updated; \(V \) doesn’t change
 - What’s the relationship between \(V \) and \(V' \) after long enough?
 - \(V' = T^\pi V \) \! We’ve completed 1 iter of VI for solving \(V^\pi \)
 - Copy \(V' \) to \(V \), and repeat this procedure again and again
 - TD(0): almost the same, except that we don’t wait. Copy \(V' \) to \(V \)
 after every update!
 - (Algorithms that "wait" actually have a come back in deep RL!)
 - Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)
TD(0) vs MC

• TD(0) target: \(r_t + \gamma V(s_{t+1}) \)
• MC target: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \)
• MC target is unbiased: expectation of target is the \(V^\pi(s) \)
• TD(0) target is biased (w.r.t. \(V^\pi(s) \)): the expected target is \((T^\pi V)(s) \)
 • Although the expected target is not \(V^\pi \), it’s closer to \(V^\pi \) than where we are now (recall that \(T^\pi \) is a contraction)
• On the other hand, TD(0) has lower variance than MC
• Bias vs variance trade-off
• Also a practical concern: when interval of a time step is too small (e.g., in robotics), \(V(s_t) \) and \(V(s_{t+1}) \) can be very close, and their difference can be buried by errors (error compounding over time)
TD(λ): Unifying TD(0) and MC

- **1-step bootstrap** (=TD(0)): \(r_t + \gamma V(s_{t+1}) \)
- **2-step bootstrap**: \(r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2}) \)
- **3-step bootstrap**: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3}) \)
- **...**
- **∞-step bootstrap** (=MC=TD(1)): \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \)

- n-step bootstrap: as n increases, more variance, less bias
- Exercise: what’s the expected target in n-step bootstrap? \((T^{\pi})^n V\)
- TD(λ): weighted combination of n-step bootstrapped target, with weighting scheme \((1 - \lambda)\lambda^{n-1}\)
 - \(\lambda = 0 \): only n=1 gets full weight. TD(0)
 - Limit \(\lambda \to 1 \): (almost) MC, see pg 24 of Szepesvári
- “forward view” of TD(λ)
TD(\(\lambda\)): Unifying TD(0) and MC

- Why the choice of \((1 - \lambda)\lambda^{n-1}\)?
- Enables efficient online implementation
- “Backward view” of TD(\(\lambda\))

Algorithm 3 The function that implements the tabular TD(\(\lambda\)) algorithm with replacing traces. This function must be called after each transition.

```plaintext
function TDLAMBDA(X, R, Y, V, z)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces
1: \(\delta \leftarrow R + \gamma \cdot V[Y] - V[X]\)
2: for all \(x \in X\) do
3: \([z[x]] \leftarrow \gamma \cdot \lambda \cdot z[x]\)
4: if \(X = x\) then
5: \([z[x]] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]\)
6: end if
7: \(V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]\)
8: end for
9: return \((V, z)\)
```

- Their X is our \(s_t\)
- Their Y is our \(s_{t+1}\)
- \(\delta\) is the standard TD error (1-step)
- \(z\) is called the eligibility trace
- Every step we update at all states (TD(0) only updates V at the current state \(s_t\))

- This code is the improved version with replacing traces; the original version has the red term
Equivalence between backward and forward view

• Will show in a simplified case

• An infinite trajectory, initial state s_1 only appears once, all updates are postponed til the end and “patched” together

• calculate the update for $V(s_1)$ according to the two views

Forward view: (learning rate α omitted in all updates)

• $(1-\lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1))$
• $(1-\lambda)\lambda \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) - V(s_1))$
• $(1-\lambda)\lambda^2 \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) - V(s_1))$, and so on

Backward view:

• $1 \cdot (r_1 + \gamma V(s_2) - V(s_1))$
• $\lambda \gamma \cdot (r_2 + \gamma V(s_3) - V(s_2))$
• $\lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) - V(s_3))$, and so on

$V(s_1) \leftarrow V(s_1) + \alpha \left(\sum_{n=1}^{\infty} \frac{\alpha}{\gamma} V(s_n) - V(s_1) \right)$

1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$
2: for all $x \in X$ do
3: $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
4: if $X = x$ then
5: $z[x] \leftarrow 1 + \gamma \lambda z[x]$
6: end if
7: $V[x] \leftarrow V[x] + \alpha \cdot \delta$
Coeff of r_1: \[\sum_{n=1}^{\infty} (1-\lambda) \lambda^{n-1} = 1. \]

\[r_2 = \gamma \cdot \sum_{n=2}^{\infty} (1-\lambda) \lambda^{n-1} \]

\[= \gamma \cdot \lambda \sum_{n=1}^{\infty} (1-\lambda) \lambda^{n-1} \]

\[= \gamma \cdot \lambda. \]

\[V(s_2) : \gamma \cdot (1-\lambda). \]

\[= \gamma \cdot (1-\lambda). \]