Bayesian RL
Bayesian Decision Making

• In most part of this course we’ve taken a frequentist view of decision-making under uncertainty
 • e.g., the sample complexity guarantees we give in the exploration section are also worst-case bounds
 • that is, regardless of how nature picks the problem instance from a predetermined family (e.g., all MDPs whose state space is S)—possibly in an adversarial manner—the guarantee always holds

• The alternative: Bayesian RL
 • assume some *prior* over problem instances
 • use data to update the *posterior* according to Bayes rule
Review: Bayesian estimation of the bias of a coin

• Suppose we have a coin with unknown bias θ
• Want to estimate θ from i.i.d. coin tosses X_1, \ldots, X_n
• Frequentist approach/analysis: $\hat{\theta} = \frac{1}{n} \sum_i X_i$; can bound $|\theta - \hat{\theta}|$
 by Hoeffding’s regardless of what value θ takes
 • worst-case over all Bernoulli distributions with $\theta \in [0,1]$
 • Fix θ, the distribution of X_i is well-defined, but there is no such thing as “distribution of θ”
Review: Bayesian estimation of the bias of a coin

• Suppose we have a coin with unknown bias θ
• Want to estimate θ from i.i.d. coin tosses X_1, \ldots, X_n
• Bayesian approach
 • First, pick a prior, which is a distribution over θ
 • Often pick beta distribution (conjugate to Bernoulli) $\theta \sim p = \text{beta}(a, b)$, where a and b represents belief in prior
 • Use data to compute posterior: $q(\theta) \propto p(\theta) \Pr[X_1:n | \theta]$
 • In the special case here, the update is easy: q is still a beta, but you add #heads to a and #tails to b

fig from: https://towardsdatascience.com/dirichlet-distribution-a82ab942a879
From Bayesian Prediction to Decision-making

- The bayesian stuffs you learn from a standard ML class is about prediction
- You get a posterior over the true world, which is often not what you want (e.g., we may want point estimates or confidence intervals)
- You are told to induce the quantities of interest from the posterior in anyway you want—there is no unique answer to how you do this
- In Bayesian decision-making, there is always a well-defined notion of optimal decision-making
 - e.g., in the exploration-exploitation setting, we will see that Bayesian optimality is well-defined with an interesting connection to POMDPs
Bayesian Multi-armed Bandits

• Consider a multi-armed bandit, where the reward of each arm follows a Bernoulli distribution with unknown parameter θ_i (for $i=1, \ldots, K$, where K is the number of arms)

• In the Bayesian setting, we need to pick a prior p for $\{\theta_i\}_{i=1,\ldots,K}$
 • For simplicity, let's say each θ_i follows an i.i.d. beta
 • Here i.i.d.ness of $\{\theta_i\}$ implies that data from one arm will not be used to update the posterior of any other arm (i.e., no generalization)

• (Bayesian) Metric for the algorithm’s performance
 • Suppose algorithm interacts with the env for T rounds
 • In round t, the algorithm gets reward r_t

 Metric: $\mathbb{E}_{\{\theta_i\} \sim p} \left[\sum_{t=1}^{T} r_t \bigg| \text{exec alg in problem instance } \{\theta_i\} \right]$

• What is the optimal value and what is an algorithm that achieves it?
Define Bayesian Optimality

- Key result: The Bayesian optimal value and algorithm are defined by the optimal value and policy in a belief MDP (sometimes also called Bayesian Adaptive MDP/POMDP)

- Defining the belief MDP
 - State space: the space of possible posteriors q over $\{\theta_i\}$ (sometimes also called an information state)
 - Action space: same as the original problem (K arms)
 - Reward function: $R(q, a) = \mathbb{E}_{\{\theta_i\} \sim q}[\theta_a]$
 - Transition function: (defined via a generative process) when we take action a in state q, we transition to q' as: $
 \{\theta_i\} \sim q, \ r \sim Ber(\theta_a), \ q' = BeliefUpdate(q, a, r)$
 - Horizon is T (finite-horizon, undiscounted)

- Claim: optimal policy in this MDP (which maps (belief, time-step) to actions) is an algorithm that achieves Bayes optimality
Compare the original vs the Bayesian problems

• Learning vs planning
 • Original: learning under uncertainty (model unknown)
 • Bayesian RL: \textit{planning} with fully known transition model

• Horizon
 • Original: one-shot decision making (bandits)
 • Bayesian RL: sequential decision-making with (extremely) long horizon T

• Algorithm style for exploration-exploitation
 • Original: the metric requires to balance exploration and exploitation
 • Bayesian RL: no need to explicit balance exp-exp. The optimal policy balances exp-exp optimally (by definition)!
Challenges in Bayesian RL & Practical Algorithms

• Solving the belief MDP is computationally very challenging
 • State space is too large and complex (all posteriors)
 • Horizon is extremely long
• Practical heuristic algorithm: Thompson sampling
 • Extremely simple: given posterior q, sample a problem instance from q, and make decisions greedily w.r.t. the sampled instance!
 • Automatically balance exp-exp
 • No hyperparameters (apart from the prior)
• Practical meta-level algorithm: MCTS
 • Simplified case: use Monte-Carlo control for one-step policy improvement (over a heuristic algorithm)
 • Computation: $O(T) \Rightarrow O(nT^2)$ where n is the number of simulations run in each real time step
Further comments

• We consider a MAB here, but the way to handle an MDP or even POMDP (say with finite horizon H) is very similar
 • The corresponding Bayesian-Adaptive MDP (BAMDP) has a horizon of HT, where T, is the total number of episodes
 • The state in the BAMDP is (original state, posterior over MDP family)
 • Exercise: define the BAMDP yourself
• Besides computation, another issue is the choice of prior
 • (Die-hard Bayesians will tell you prior is “never wrong”)
 • Similar to the choice of function approximation in the frequentist approach (bias-variance trade-off)
 • For MDPs, a popular choice is i.i.d. Dirichlet for each $P(.|s,a)$ => Bayesian version of “tabular RL”
 • Another limitation of Bayesian RL: must be model-based almost by definition