Algorithms for control
reading: Sutton & Barto, Chap 10
We have seen how to learn V^π from data (TD).

If we can learn Q^π, then we can do control (policy optimization) by running policy iteration.

How to learn Q^π? Similar idea.

Bellman eq for Q^π: $Q^\pi(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} [Q^\pi(s', \pi(s'))]$

Given $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ where all actions are taken according to π, update rule for learning Q^π: “SARSA”

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

Do you need a_{t+1}? Check out: expected Sarsa.

In TD (for learning V^π), we require that each state is visited sufficiently often.

Similarly, here we require that each state-action pair is visited sufficiently often.

π must be stochastic! (so we cannot run PI exactly.)
\(Q^T \in \mathbb{R}^{S \times A} \), \(Q^T(s, a) = (T^{\overline{Q}}(s, a) \Delta)
\]
\[(T^{\overline{Q}}(s, a)) \Delta = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \left[Q_k(s', \pi) \right] = \mathbb{E}\left[Y + \delta \cdot f(s', \pi) \mid s, a \right]. \]

\[\xi_i (r_i, s_i') \sim (s, a). \]

\[\frac{1}{n} \sum_{i=1}^{n} (r_i + \gamma Q_k(s_i', \pi)) \]

\[Q_k(s, a) \leftarrow Q_k(s, a) + \alpha (r_i + \gamma Q_k(s_i', \pi)) - Q_k(s, a)). \]

Expected Sarsa.

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma \max Q(s_{t+1}, \pi) - Q(s_t, a_t)). \]

off-policy.
\[(S_t, a_t, r_t, S_{t+1}, a_{t+1}), \tag{1} \]

\[\frac{1}{n} \sum_{i=1}^{n} r_i = \sqrt{n} \left(\frac{s}{\pi} \right). \]

\[
\begin{align*}
\alpha & \sim \pi, \quad r & \sim R(\cdot | a).
\end{align*}
\]

\[
\hat{R}(a) = \frac{\sum_i V_i \mathbb{I}[a_i = a]}{\sum_i \mathbb{I}[a_i = a]}. \tag{2}
\]

\[
(a_t, r_t, s_t, a_{t+1}).
\]

\[
\text{anything.}
\]
\[V(S_t) \leftarrow V(S_t) + \alpha \left(R_+ + \gamma V(S_{t+1}) - V(S_t) \right) \]

\[S_t \xrightarrow{\pi} Q_+ \rightarrow \begin{array} \[1.5em] R_+ \\ S_{t+1} \end{array} \]
SARSA with epsilon-greedy policy

- $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$
- Take epsilon-greedy policy w.r.t the current Q-estimate
 - At each time step t, with probability ϵ, choose a_t from the action space uniformly at random. otherwise, $a_t = \text{argmax}_a Q(s_t, a)$
- Greedy part: “no-wait” version of policy improvement. Take greedy action w.r.t. Q every time step!
 - the policy being evaluated is constantly changing
 - “ϵ-greedy policy” is not a fixed policy
- ϵ part: make sure to explore all actions
- Precisely speaking, this is SARSA(0)
 - Can be extended to SARSA(λ) just as TD
 $$\gamma_t + \gamma \gamma_{t+1} + \gamma^2 Q(S_{t+2}, a_{t+2})$$
Does SARSA converge to optimal policy?

- The epsilon part can prevent convergence!
- The cliff example (pg 132 of Sutton & Barto)
 - Deterministic navigation, high penalty when falling off the cliff
 - Optimal policy: walk near the cliff
 - Unless epsilon is super small, SARSA will avoid the cliff
- Will need to reduce ε over time—but small ε does not sufficiently explore, and Q-value estimates converge slower
SARSA with epsilon-greedy policy

- ϵ-greedy can be replaced by softmax: chooses action a with probability \(\frac{e^{Q(s_t,a)/T}}{\sum_{a'}e^{Q(s_t,a')/T}} \), here T is temperature and needs to decrease over time (playing a role similar to ϵ in ϵ-greedy)
- Can use other stochastic policy that assigns most probability to the greedy action and explore all other actions at the same time
- Exercise: derive SARSA with function approximation

\[\pi(a|s_t) \propto e^{Q(s_t,a)/T} \]

\[Q^\pi(s,c) \approx \phi(s,a)^T \theta \]
We’ve seen how to derive a control algorithm (SARSA) based on the idea of policy iteration (or Bellman eq. for policy eval).

How about value iteration (Bellman optimality eq.)?

\[Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} \left[\max_{a'} Q^*(s', a') \right] \]

Update rule:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)) \]

Algorithms for control always have a “max” somewhere

- the max in Q-learning is explicit in the update rule
- Exercise: where is the “max” in SARSA?

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)) \]
Q-learning

- Q-learning does not specify how a_t should be taken
 - Q-learning is *off-policy*: how we take actions have nothing to do with our current Q-estimate (or its greedy policy)
 - Learning rule is completely disentangled from the exploration rule (how to take actions during data collection). Explore however you want using a “behavior policy”
 - e.g., uniformly random action, or ε-greedy (here you do not need to reduce ε)
- Exercise: think about how Q-learning behaves in the cliff example
Connection between Q-learning and SARSA

- **Expected sarsa**: \(Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(\tau_t + \gamma Q(s_{t+1}, \pi) - Q(s_t, a_t)) \)
- Recall that when \(\pi \) is stochastic, \(Q(s, \pi) := \mathbb{E}_{a \sim \pi(s)}[Q(s, a)] \)
- Expected sarsa can be run off-policy!
 - Sarsa needs to be on-policy because we use \(a_{t+1} \) from data; this action needs to be consistent with \(\pi \) according to Bellman equation
 - If we replace it with the expectation (i.e., “imagined” action that is not actually taken in the environment), it removes any restriction on the behavior policy
- (Insight due to Rich Sutton): Q-learning is a special case of expected Sarsa! Which policy are we evaluating?
\[
Q(s_t, a_t) \quad \rightarrow \quad \tau_t + \gamma \max_{a'} Q(s_{t+1}, a') = Q(s_t, a_t)
\]
Exercise: Multi-step Q-learning?

- Does the target \(E \left[r_t + \gamma r_{t+1} + \gamma^2 \max_a Q(s_{t+2}, a') \right] \) work? If not, why?

- Consider the expected target conditioned on \(s_t, a_t \). Express it using standard Bellman update operators.

- Give away: the expected target is \((\mathcal{T}^n(\mathcal{T}Q))(s_t, a_t)\), where \(\pi \) is behavior policy.

\[
\begin{align*}
(s, a, r, s') : \quad Q(s, a) & \leftarrow Q(s, a) + \\
& \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
\end{align*}
\]
Q-learning with experience replay

- So far most algorithms we see are “one-pass”
 - i.e., use each data point once and discard them
 - \# updates = \# data points
- Concern 1: We need many updates for optimization to converge. Can we separate optimization from data collection?
- Concern 2: Need to reuse data if sample size is limited
- Q-learning as an example: suppose we are given a bag of \((s, a, r, s')\) tuples and we cannot collect further data, what to do?
 - Sample (with replacement) a tuple randomly from the bag, and apply the Q-learning update rule.
 - \# updates >> \# data points
 - Converges with appropriate learning rate
 - Guess what it converges to?
 - Model-based RL!
Q-learning with function approximation

- As before, we first derive the batch version
- Approximate Q^* using a (parameterized) function class \mathcal{F}
- Want to approximate Bellman update operator using data (a bag of (s, a, r, s') tuples)
- Fitted Q-Iteration (FQI):
 $$f_{k+1} \leftarrow \arg\min_{f_\theta \in \mathcal{F}} \sum_{(s, a, r, s')} (f_\theta(s, a) - r - \gamma \max_{a'} f_k(s', a'))^2$$
- Q-learning with function approximation
 $$\theta \leftarrow \theta - \alpha \cdot (f_\theta(s, a) - r - \gamma \max_{a'} f_\theta(s', a')) \nabla f_\theta(s, a)$$
- Exercise: this is Q-learning when using tabular function class
- Similar to TD, we only take gradient on $f_\theta(s, a)$ and ignore $f_\theta(s', a')$, because the latter is treated as a constant (it plays the role of f_k)
\[Q_k \leftarrow \mathcal{T}Q_{k-1} \]

\[
(\mathcal{T}Q_{k-1})(s,a) = \mathbb{E}_{\hat{r}} \left[Y + \gamma \max_{a'} Q_{k-1}(s',a') \mid s,a \right].
\]

\[
= \operatorname{argmin}_f \mathbb{E} \left[(f(s,a) - \hat{r} - \gamma \max_{a'} f(s',a'))^2 \right],
\]

\[
\approx \operatorname{argmin}_{f \in F} \mathbb{E} \left[(f(s,a) - \hat{r})^2 \right].
\]

Sample \((s,r,s')\).

\[
\Theta \leftarrow \Theta - \alpha \left(f_\Theta(s,a) - \hat{r} \right) \nabla f_\Theta(s,a).
\]
Quick Recap of the TD Part

How to go from a Bellman update operator to a learning rule?

1. Write down the Bellman up op for the thing you want to learn
 - e.g., $Q_{k+1} \leftarrow \mathcal{T}^\pi Q_k$ if we want to learn Q^π

2. Write down the detailed equation for a single s (or (s,a))
 - $Q_{k+1}(s, a) \leftarrow R(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)}[Q_k(s', \pi(s'))]$

3. Replace the expectations with their sampled version to form the target (assuming data is (s, a, r, s', a'))
 - target: $r + \gamma Q(s', \pi(s'))$ (expected Sarsa)
 - alternative target: $r + \gamma Q(s', a')$ if on-policy ($a' \sim \pi(s')$)

4. Online tabular ver: Plug into the template
 - $Q(s, a) \leftarrow Q(s, a) + \alpha (\text{target} - Q(s, a))$

5. Batch function approximation ver: run least sq regression on
 - $\{(s, a) \mapsto \text{target}\}$
Quick Recap of the TD Part

Another example: TD(0)

1. Write down the Bellman up op for the thing you want to learn
 - \(V_{k+1} \leftarrow T^\pi V_k \)

2. Write down the detailed equation for a single \(s \) (or \((s,a) \))
 - \(V_{k+1}(s) \leftarrow R(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s,\pi(s))}[V_k(s')] \)

3. Replace the expectations with their sampled version to form the target (assuming data is \((s, a, r, s') \))
 - target: \(r + \gamma V(s') \)
 - Be careful! This is only a sampled version of above if on-policy \((a \sim \pi(s)) \)
 - Difference between learning \(V \) and \(Q \): learning \(V^\pi \) has to be on-policy (for now), but learning \(Q^\pi \) can be easily off-policy (expected sarsa)