Tabular RL for Value Prediction
Reading: Algs for RL (Szepesvári), Sec 3.1
The Value Prediction Problem

Given π, want to learn V^π or Q^π

Why useful? Recall that if we know how to compute Q^π, we can run policy iteration

On-policy learning: data is generated by π

Off-policy learning: data is generated by some other policy

Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)

When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)
Monte-Carlo Value Prediction

• If we can roll out trajectories from any starting state that we want, here is a simple procedure
• For each s, roll out n trajectories using policy π
 • For episodic tasks, roll out until termination
 • For continuing tasks, roll out to a length (typically $H = O(1/(1 - \gamma))$) such that omitting the future rewards has minimal impact (“small truncation error”)
• Let $\hat{V}_\pi(s)$ (will just write $V(s)$) be the average discounted return
• also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 • Keep generating trajectories until we have enough data points for each starting state
Implementing MC in an online manner

• The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
• Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
• For $i = 1, 2, \ldots$
 • Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return
 • Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$
 • Otherwise, $V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)} V(s_i) + \frac{1}{n(s_i)} G_i$
• Verify: at any point, $V(s)$ is always the MC estimation using trajectories starting from s available so far
\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i . \]

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n-1} x_i . \]

\[\bar{x} = \frac{1}{n-1} \sum_{i=1}^{n-1} x_i . \]

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i . = \arg \min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} (\theta - x_i)^2 . \]

\[\theta \leftarrow \theta - \alpha \nabla \theta . \]

\[\theta \leftarrow \theta - \alpha . \nabla_{\theta} (\theta - x_i)^2 . \]

\[\theta - \alpha \cdot (\theta - x_i) . \]

\[\theta \leftarrow \theta . \nabla (s_i) . \]

\[\theta \leftarrow \theta . C_i . \]
Implementing MC in an online manner

- More generally, \(V(s_i) \leftarrow (1 - \alpha)V(s_i) + \alpha G_i \)
 - \(\alpha \) is known as the step size or the learning rate
 - in theory, convergence require sum of \(\alpha \) goes to infinity while sum of \(\alpha^2 \) stays finite; in practice, constant small \(\alpha \) is often used
 - \(G_i \) is often called “the target”
 - The expected value of the target is what we want to update our estimate to, but since it’s noisy, we only move slightly to it
 - Alternative expression: \(V(s_i) \leftarrow V(s_i) + \alpha(G_i - V(s_i)) \)
 - Moving the estimate in the direction of error (= target - current)
 - Can be interpreted as stochastic gradient descent
 - If we have i.i.d. real random variables \(v_1, v_2, \ldots, v_n \), the average is the solution of the least-square optimization problem:
 \[
 \min_v \frac{1}{2n} \sum_{i=1}^{n} (v - v_i)^2
 \]
 - Stochastic gradient: \(v - v_i \) (for uniformly random \(i \))
Every-visit Monte-Carlo

• Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?
• Let’s say we only have one single long trajectory
 \(s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots \)
 • (By “long trajectory”, we mean trajectory length >> effective horizon \(H = O(1/(1 - \gamma))) \)
• On-policy: \(a_t \sim \pi(s_t) \), where \(\pi \) is the policy we want to evaluate
• Algorithm: for each \(s \), find all \(t \) such that \(s_t = s \), calculate the discounted sum of rewards between time step \(t \) and \(t+H \), and take average over them as \(V(s_i) \)
• Convergence requires additional assumption: the Markov chain induced by \(\pi \) is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity
Every-visit Monte-Carlo

- You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
- i.e., obtain a random return for each state visited on the trajectory
- What if a state occurs multiple times on a trajectory?
 - Approach 1: only the 1st occurrence is used ("first-visit MC")
 - Approach 2: all of them are used ("every-visit MC")
Alternative Approach: TD(0)

- Again, suppose we have a single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$ in a continuing task.
- TD(0): for $t = 1, 2, \ldots$, $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$
 - TD = temporal difference
 - $r_t + \gamma V(s_{t+1}) - V(s_t)$: “TD-error”
 - The same structure as the MC update rule, except that we are using a different target here: $r_t + \gamma V(s_{t+1})$
 - Often called “bootstrapped” target: the target value depends on our current estimated value function V
 - Conditioned on s_t, what is the expected value of the target (taking expectation over the randomness of r_t, s_{t+1})?
 - It’s $(T^\pi V)(s_t)$
$$TD(0): \quad V(s_t) \leftarrow V(s_t) + \alpha (G_t - V(s_t))$$

\[
V(s_t) = \left(\gamma \prod_{t} V(s_t) \right) \Delta = \mathbb{E}_{\pi} \left[V(s, \pi) + \delta \mathbb{E}_{s' \sim P(s, a)} \left[V(s') \right] \right].
\]

\[
V(s_t) = \mathbb{E}_{r_s, s' | s, \pi} \left[r + \gamma V(s') \right].
\]

\[\forall s \in \mathcal{S}, \quad V_{k+1} \leftarrow \mathbb{E}_{r_s, s' | s, \pi} \left[r + \gamma V_k(s') \right].\]

\[\overline{V}_k(S) = \frac{1}{n} \sum_{i=1}^{n} \left(r_i + \gamma V_k(s_i') \right).\]

For \(s \in \mathcal{S}, \)

For \(i = 1, 2, \ldots, n \)

\[V_{k+1}(S) \leftarrow V_{k+1}(S) + \alpha \left(r_i + \gamma V_k(s_i') - V_{k+1}(S) \right).\]
for \((s, a, r, s')\),
\[
V_{k+1}(s) \leftarrow V_{k+1}(s) + \alpha (r + \gamma V_k(s') - V_{k+1}(s)).
\]
Understanding TD(0)

- \(V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t)) \)

Imagine a slightly different procedure
- Initialize \(V \) and \(V' \) arbitrarily
- Keep running \(V'(s_t) \leftarrow V'(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V'(s_t)) \)
- Note that only \(V' \) is being updated; \(V \) doesn’t change
- What’s the relationship between \(V \) and \(V' \) after long enough?
 - \(V' = T^\pi V \) ! We’ve completed 1 iter of VI for solving \(V^\pi \)
- Copy \(V' \) to \(V \), and repeat this procedure again and again

- TD(0): almost the same, except that \textit{we don’t wait}. Copy \(V' \) to \(V \) after every update!
- (Algorithms that “wait” actually have a come back in deep RL!)
- Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)
TD(0) vs MC

• TD(0) target: \(r_t + \gamma V(s_{t+1}) \)
• MC target: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \)

• MC target is unbiased: expectation of target is the \(V^\pi(s) \)
• TD(0) target is biased (w.r.t. \(V^\pi(s) \)): the expected target is \((T^\pi V)(s) \)
 • Although the expected target is not \(V^\pi \), it’s closer to \(V^\pi \) than where we are now (recall that \(T^\pi \) is a contraction)
• On the other hand, TD(0) has lower variance than MC
• Bias vs variance trade-off
• Also a practical concern: when interval of a time step is too small (e.g., in robotics), \(V(s_t) \) and \(V(s_{t+1}) \) can be very close, and their difference can be buried by errors (error compounding over time)
TD(λ): Unifying TD(0) and MC

- 1-step bootstrap (=TD(0)): $r_t + γV(s_{t+1})$
- 2-step bootstrap: $r_t + γr_{t+1} + γ^2V(s_{t+2}) = G_t$
- 3-step bootstrap: $r_t + γr_{t+1} + γ^2r_{t+2} + γ^3V(s_{t+3})$
- ...
- $∞$-step bootstrap (=MC=TD(1)): $r_t + γr_{t+1} + γ^2r_{t+2} + ...$

- n-step bootstrap: as n increases, more variance, less bias
- Exercise: what’s the expected target in n-step bootstrap? $(T^n)^nV$
- TD(λ): weighted combination of n-step bootstrapped target, with weighting scheme $(1 - λ)λ^{n-1}$
 - λ = 0: only n=1 gets full weight. TD(0)
 - limit λ -> 1: (almost) MC, see pg 24 of Szepesvári
 - “forward view” of TD(λ)
\[E[G_t \mid s_t]. \]

\[G_t = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}). \]

\[E[G_t \mid s_t] = E \left[\frac{r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2})}{s_t} \right]. \]

\[= E \left[r_t + \gamma \left(\frac{r_{t+1} + \gamma V(s_{t+2})}{s_{t+1}} \right) \right] \mid s_t \right]. \]

\[= E \left[r_t \mid s_t \right] + \gamma E \left[E \left[r_{t+1} + \gamma V(s_{t+2}) \mid s_t, s_{t+1} \right] \right] \mid s_{t+1} \right]. \]

\[= E \left[r_t + \gamma \left(\frac{r_{t+1} + \gamma V(s_{t+2})}{s_{t+1}} \right) \right] \mid s_t \right]. \]

\[= E \left[r_t + \gamma (T^n V)(s_{t+1}) \right] \mid s_t \right]. \]

\[(T^a (T^n V))(s_t). \]
TD(\(\lambda\)): Unifying TD(0) and MC

- Why the choice of \((1 - \lambda)\lambda^{n-1}\)?
 - Enables efficient online implementation
 - “Backward view” of TD(\(\lambda\))

Algorithm 3 The function that implements the tabular TD(\(\lambda\)) algorithm with replacing traces. This function must be called after each transition.

```plaintext
function TDLAMBDA(X, R, Y, V, z)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces
1: \[ \delta \leftarrow R + \gamma \cdot V[Y] - V[X] \]
2: for all \(x \in \mathcal{X} \) do
3: \[ z[x] \leftarrow \gamma \cdot \lambda \cdot z[x] \]
4: if \(X = x\) then
5: \[ z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x] \]
6: end if
7: \[ V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x] \]
8: end for
9: return \((V, z)\)
```

- Their X is our \(s_t\)
- Their Y is our \(s_{t+1}\)
- \(\delta\) is the standard TD error (1-step)
- \(z\) is called the *eligibility trace*
- Every step we update at all states (TD(0) only updates \(V\) at the current state \(s_t\))

- This code is the improved version with replacing traces; the original version has the red term
Equivalence between backward and forward view

• Will show in a simplified case
• An infinite trajectory, initial state \(s_1 \) only appears once, all updates are postponed til the end and “patched” together
• calculate the update for \(V(s_1) \) according to the two views
• Forward view: (learning rate \(\alpha \) omitted in all updates)
 • \((1 - \lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1))\)
 • \((1 - \lambda)\lambda \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) - V(s_1))\)
 • \((1 - \lambda)\lambda^2 \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) - V(s_1))\), and so on
• Backward view:
 • \(1 \cdot (r_1 + \gamma V(s_2) - V(s_1))\)
 • \(\lambda \gamma \cdot (r_2 + \gamma V(s_3) - V(s_2))\)
 • \(\lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) - V(s_3))\), and so on

\[\delta = (1 - \lambda) \cdot \delta.\]

1: \(\delta \leftarrow R + \gamma \cdot V[Y] - V[X]\)
2: \textbf{for all } \(x \in \mathcal{X}\) \textbf{ do}
3: \(z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]\)
4: \textbf{if } \(X = x\) \textbf{ then}
5: \(z[x] \leftarrow 1\)
6: \textbf{end if}
7: \(V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]\)