Importance Sampling

(ref: notes on course website; not all contents in notes are covered in class)
Motivating scenario: off-policy evaluation

- Given π, estimate $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$
- Alg outputs some scalar v; accuracy measured by $|v - J(\pi)|$
- Previously we solved this problem by on-policy MC
- What if we have data collected using some other policy π_0?
 - Likely the case when we try to evaluate a trained policy using historical data (only meaningful for “real-life” app of RL)
- There are approaches you can already take from what we have learned so far
 - e.g., run expected Sarsa on the off-policy data, and output as $v = \mathbb{E}_{s \sim d_0}[\hat{Q}^\pi(s, \pi(s))]$ the estimate
 - requires function approximation, and is in general biased
- Is there an unbiased estimator?
Introduction to Importance Sampling (IS)

- Suppose we are interested in estimating $\mathbb{E}_{x \sim p}[f(x)]$
- If we have $x \sim p$, $f(x)$ would be an unbiased MC estimate
- What if we can only sample $x \sim q$, but still want a “MC-style” estimator?
- IS (or importance weighted, or inverse propensity score (IPS) estimator): $\frac{p(x)}{q(x)}f(x)$

Unbiasedness:

$$\mathbb{E}_{x \sim q}\left[\frac{p(x)}{q(x)}f(x) \right] = \sum_x q(x)\left(\frac{p(x)}{q(x)}f(x) \right) = \sum_x p(x)f(x) = \mathbb{E}_{x \sim p}[f(x)]$$

- $\frac{p(x)}{q(x)}$: Importance weight (ratio), which “converts” the distribution from q (the data distribution) to p
- $\mathbb{E}_{x \sim q}\left[\frac{p(x)}{q(x)} \right] \equiv 1$: always holds!
Application in contextual bandit (CB)

- CB: episodic MDP with $H = 1$. Actions have no long-term effects. Just optimize the immediate reward.
- $x \sim d_0$: context distribution (corresponds to initial state distribution of the MDP)
- agent takes an action a based on x
- agent observes reward $r \sim R(x, a)$
- (episode terminates; no next-state)
- The off-policy evaluation problem
- We have collected a dataset (a bag of (x, a, r) tuples), where $a \sim \pi_b(s)$ (π_b is stochastic)
- want to know $J(\pi) := \mathbb{E}_\pi[r]$
 - The π in the subscript is short for $x \sim d_0, a \sim \pi, r \sim R(x, a)$
 - Let π be also stochastic (can be deterministic)
Application in contextual bandit (CB)

- The data point is a tuple \((x, a, r)\)
- The function of interest is \((x, a, r) \mapsto r\)
- The distribution of interest is \(x \sim d_0, a \sim \pi, r \sim R(x, a)\)
 - Let the joint density be \(p(x, a, r)\)
- The data distribution is \(x \sim d_0, a \sim \pi_b, r \sim R(x, a)\)
 - Let the joint density be \(q(x, a, r)\)
- IS estimator: \(\frac{p(x, a, r)}{q(x, a, r)} \cdot r = \frac{\pi(a \mid x)}{\pi_b(a \mid x)} \cdot r\)
- Write down the densities
 - \(p(x, a, r) = d_0(x) \cdot \pi(a \mid x) \cdot R(r \mid x, a)\)
 - \(q(x, a, r) = d_0(x) \cdot \pi_b(a \mid x) \cdot R(r \mid x, a)\)
- To compute importance weight, you don’t need knowledge of \(\mu\) or \(R\!) You just need \(\pi_b\) (or even just \(\pi_b(a \mid x)\), “proposal prob.”)
Application in contextual bandit (CB)

• Let ρ be a shorthand for $\frac{\pi(a \mid x)}{\pi_b(a \mid x)}$, so estimator is $\rho \cdot r$

• π_b need to “cover” π
 • i.e., whenever $\pi(a \mid x) > 0$, we need $\pi_b(a \mid x) > 0$

• A special case:
 • π is deterministic, and π_b is uniformly random ($\pi_b(a \mid x) \equiv 1/|A|$)
 \[
 \mathbb{I}[a = \pi(x)] \cdot \frac{1}{|A|} \cdot r
 \]
 • only look at actions that match what π wants to take, and discard other data points
 • If match, $\rho = |A|$; mismatch: $\rho = 0$

• On average: only $1/|A|$ portion of the data is useful

• Variance of ρ is $O(|A|)$
A note about using IS

- We know that shifting rewards do not matter (for planning purposes) for fixed-horizon problems.
- However, when you apply IS, shifting rewards *do* impact the variance of the estimator.
- Special case:
 - deterministic π, uniformly random π_b,
 - reward is deterministic and constant: regardless of (x,a), reward is always 1 (without any randomness)
 - We know the value of any policy is 1
 - On-policy MC has 0 variance
 - IS still has high variance!
A note about using IS

• Where does variance come from?
 \[
 \frac{1}{n} \sum_{i=1}^{n} \frac{\text{1}}{|A|} \cdot r^{(i)} = \sum_{i=1}^{n} \frac{\text{1}}{|A|} \cdot r^{(i)}
 \]
 \[
 = \frac{1}{n/|A|} \sum_{i:a^{(i)}=\pi(x^{(i)})} r^{(i)}
 \]

• Find all “matched” data points, sum their rewards, then…
• normalize by the expected # matched data points \(n/|A| \)
• You might think we should normalize by the actual # matched data points observed in data…
 • This is what weighted IS does (not required)
 • Generally a biased (but consistent) estimator, but much lower variance in some cases
Example Application: Off-policy TD(0)

• Recall that TD(0) is on-policy
• How to derive its off-policy version?
• Data: \((s, a, r, s')\) where \(a \sim \pi_b(s)\), but we want to learn \(V^\pi\)
• TD(0) target: \(r + \gamma V(s')\) => learns \(V^\pi_b\)
• Off-policy TD(0) target: \(\frac{\pi(a | s)}{\pi_b(a | s)}(r + \gamma V(s'))\)
Multi-step IS in MDPs

• Data: trajectories starting from $s_1 \sim \mu$ using π_b (i.e., $a_t \sim \pi_b(s_t)$)
 \(\{(s^{(i)}_1, a^{(i)}_1, r^{(i)}_1, s^{(i)}_2, \ldots, s^{(i)}_H, a^{(i)}_H, r^{(i)}_H)\}_{i=1}^n \) (for simplicity, assume process terminates in H time steps)

• Want to estimate $J(\pi) := \mathbb{E}_{s \sim d_0}[V^{\pi}(s)]$

• Same idea as in bandit: apply IS to the entire trajectory
Application in MDPs

• The data point is \(\tau := (s_1, a_1, r_1, \ldots, s_H, a_H, r_H) \)
• The function of interest is \(\tau \mapsto \sum_{t=1}^{H} \gamma^{t-1} r_t \)
• Let the distribution of trajectory induced by \(\pi \) be \(p(\tau) \)
• Let the distribution of trajectory induced by \(\pi_b \) be \(q(\tau) \)
• IS estimator: \(\frac{p(\tau)}{q(\tau)} \cdot \sum_{t=1}^{H} \gamma^{t-1} r_t \)
• Write down the densities (assume deterministic reward for simplicity)
 • \(p(\tau) = d_0(s_1) \cdot \pi(a_1 | s_1) \cdot P(s_2 | s_1, a_1) \cdot \pi(a_2 | s_2) \cdots P(s_H | s_{H-1}, a_{H-1}) \cdot \pi(a_H | s_H) \)
 • \(q(\tau) = d_0(s_1) \cdot \pi_b(a_1 | s_1) \cdot P(s_2 | s_1, a_1) \cdot \pi_b(a_2 | s_2) \cdots P(s_H | s_{H-1}, a_{H-1}) \cdot \pi_b(a_H | s_H) \)
 • Let \(\rho_t = \frac{\pi(a_t | s_t)}{\pi_b(a_t | s_t)} \), then \(\frac{p(\tau)}{q(\tau)} = \prod_{t=1}^{H} \rho_t =: \rho_{1:H} \)
Examine the special case again

- π is deterministic, and π_b is uniformly random ($\pi_b(a \mid x) \equiv 1/|A|$)
- $\rho_t = \frac{\mathbb{I}[a_t = \pi(s_t)]}{1/|A|}$
- only look at trajectories where all actions happen to match what π wants to take
 - If match, $\rho = |A|^H$; mismatch: $\rho = 0$
- On average: only $1/|A|^H$ portion of the data is useful
 - (When state space is unboundedly large, can prove that $|A|^H$ is inevitable; a version of “curse of horizon” in RL)
- When horizon is long, mostly applied when π and π_b are close to each other
An obvious improvement: step-wise IS

- “trajectory-wise” IS: $\rho_{1:H}\left(\sum_{t=1}^{H} \gamma^{t-1}r_t\right)$
- Idea: estimate the expected reward for each time step t, and then add them up
 - i.e., $J(\pi) = \sum_{t=1}^{H} \gamma^{t-1}\mathbb{E}[r_t \mid s_1 \sim d_0, \pi]$
 - When estimating $\mathbb{E}[r_t \mid s \sim d_0, \pi]$, we know that decisions made after time step t are irrelevant; truncate at time step t
 - Improved estimator: $\sum_{t=1}^{H} \gamma^{t-1} \cdot \rho_{1:t} \cdot r_t$
 - Equivalent to trajectory-wise IS when intermediate rewards are all 0