Tabular RL for Value Prediction

Reading: Algs for RL (Szepesvári), Sec 3.1
The Value Prediction Problem

• Given π, want to learn V^π or Q^π

• Why useful? Recall that if we know how to compute Q^π, we can run policy iteration

• On-policy learning: data is generated by π

• Off-policy learning: data is generated by some other policy

• Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)

• When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)
Monte-Carlo Value Prediction

• If we can roll out trajectories from any starting state that we want, here is a simple procedure
• For each s, roll out n trajectories using policy π
 • For episodic tasks, roll out until termination
 • For continuing tasks, roll out to a length (typically $H = O(1/(1 - \gamma))$) such that omitting the future rewards has minimal impact (“small truncation error”)
 • Let $\hat{V}^\pi(s)$ (will just write $V(s)$) be the average discounted return
 • also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 • Keep generating trajectories until we have enough data points for each starting state
Implementing MC in an online manner

• The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
• Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
• For $i = 1, 2, \ldots$
 • Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return
 • Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$
 • Otherwise, $V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)}V(s_i) + \frac{1}{n(s_i)}G_i$
 • Verify: at any point, $V(s)$ is always the MC estimation using trajectories starting from s available so far
Implementing MC in an online manner

• More generally, \(V(s_i) \leftarrow (1 - \alpha)V(s_i) + \alpha G_i \)
 • \(\alpha \) is known as the step size or the learning rate
 • in theory, convergence require sum of \(\alpha \) goes to infinity while sum of \(\alpha^2 \) stays finite; in practice, constant small \(\alpha \) is often used
 • \(G_i \) is often called “the target”
 • The expected value of the target is what we want to update our estimate to, but since it’s noisy, we only move slightly to it
• Alternative expression: \(V(s_i) \leftarrow V(s_i) + \alpha(G_i - V(s_i)) \)
 • Moving the estimate in the direction of error (= target - current)
• Can be interpreted as stochastic gradient descent
 • If we have i.i.d. real random variables \(v_1, v_2, ..., v_n \), the average is the solution of the least-square optimization problem:
 \[
 \min_v \frac{1}{2n} \sum_{i=1}^n (v - v_i)^2
 \]
 • Stochastic gradient: \(v - v_i \) (for uniformly random \(i \))
Every-visit Monte-Carlo

• Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?

• Let’s say we only have one single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$

 • (By “long trajectory”, we mean trajectory length $>>$ effective horizon $H = O(1/(1 - \gamma))$)

• On-policy: $a_t \sim \pi(s_t)$, where π is the policy we want to evaluate

• Algorithm: for each s, find all t such that $s_t = s$, calculate the discounted sum of rewards between time step t and $t+H$, and take average over them as $V(s_i)$

• Convergence requires additional assumption: the Markov chain induced by π is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity
Every-visit Monte-Carlo

• You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
• i.e., obtain a random return for each state visited on the trajectory
• What if a state occurs multiple times on a trajectory?
 • Approach 1: only the 1st occurrence is used ("first-visit MC")
 • Approach 2: all of them are used ("every-visit MC")
Alternative Approach: TD(0)

• Again, suppose we have a single long trajectory \(s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots\) in a continuing task

• TD(0): for \(t = 1, 2, \ldots\),
 \[
 V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t))
 \]

• TD = temporal difference

• \(r_t + \gamma V(s_{t+1}) - V(s_t)\): “TD-error”

• The same structure as the MC update rule, except that we are using a different target here: \(r_t + \gamma V(s_{t+1})\)

• Often called “bootstrapped” target: the target value depends on our current estimated value function \(V\)

• Conditioned on \(s_t\), what is the expected value of the target (taking expectation over the randomness of \(r_t, s_{t+1}\))?
 • It’s \(T^{\pi} V)(s_t)\)
Understanding TD(0)

- \(V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t)) \)
- Imagine a slightly different procedure
 - Initialize \(V \) and \(V' \) arbitrarily
 - Keep running \(V'(s_t) \leftarrow V'(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V'(s_t)) \)
 - Note that only \(V' \) is being updated; \(V \) doesn’t change
 - What’s the relationship between \(V \) and \(V' \) after long enough?
 - \(V' = T^\pi \ V ! \) We’ve completed 1 iter of VI for solving \(V^\pi \)
 - Copy \(V' \) to \(V \), and repeat this procedure again and again
- TD(0): almost the same, except that \textbf{we don’t wait}. Copy \(V' \) to \(V \) after every update!
- (Algorithms that “wait” actually have a come back in deep RL!)
- Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)
TD(0) vs MC

- **TD(0) target:** \(r_t + \gamma V(s_{t+1}) \)
- **MC target:** \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \)
- **MC target is unbiased:** expectation of target is the \(V^\pi(s) \)
- **TD(0) target is biased (w.r.t. \(V^\pi(s) \)):** the expected target is \((T^\pi V)(s) \)
 - Although the expected target is not \(V^\pi \), it’s closer to \(V^\pi \) than where we are now (recall that \(T^\pi \) is a contraction)
- **On the other hand, TD(0) has lower variance than MC**
- **Bias vs variance trade-off**
- **Also a practical concern:** when interval of a time step is too small (e.g., in robotics), \(V(s_t) \) and \(V(s_{t+1}) \) can be very close, and their difference can be buried by errors (error compounding over time)
TD(\(\lambda\)): Unifying TD(0) and MC

- 1-step bootstrap (=TD(0)): \(r_t + \gamma V(s_{t+1})\)
- 2-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})\)
- 3-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3})\)
- ...
- \(\infty\)-step bootstrap (=MC=TD(1)): \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots\)
- n-step bootstrap: as n increases, more variance, less bias
- Exercise: what’s the expected target in n-step bootstrap? \((T^\pi)^n V\)
- TD(\(\lambda\)): weighted combination of n-step bootstrapped target, with weighting scheme \((1 - \lambda)^n \lambda^{n-1}\)
 - \(\lambda = 0\): only n=1 gets full weight. TD(0)
 - limit \(\lambda \to 1\): (almost) MC, see pg 24 of Szepesvári
 - “forward view” of TD(\(\lambda\))
TD(\(\lambda\)): Unifying TD(0) and MC

- Why the choice of \((1 - \lambda)\lambda^{n-1}\)?
 - Enables efficient online implementation
 - “Backward view” of TD(\(\lambda\))

Algorithm 3 The function that implements the tabular TD(\(\lambda\)) algorithm with replacing traces. This function must be called after each transition.

```plaintext
function TDLAMBDA(X, R, Y, V, z)

Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces

1: \(\delta \leftarrow R + \gamma \cdot V[Y] - V[X]\)
2: for all \(x \in \mathcal{X}\) do
3: \(z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]\)
4: if \(X = x\) then
5: \(z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]\)
6: end if
7: \(V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]\)
8: end for
9: return \((V, z)\)
```

- Their X is our \(s_t\)
- Their Y is our \(s_{t+1}\)
- \(\delta\) is the standard TD error (1-step)
- \(z\) is called the eligibility trace
- Every step we update at all states (TD(0) only updates \(V\) at the current state \(s_t\))

- This code is the improved version with replacing traces; the original version has the red term
Equivalence between backward and forward view

- Will show in a simplified case
- An infinite trajectory, initial state s_1 only appears once, all updates are postponed til the end and “patched” together
- calculate the update for $V(s_1)$ according to the two views
- Forward view: (learning rate α omitted in all updates)
 - $(1 - \lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1))$
 - $(1 - \lambda)\lambda \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) - V(s_1))$
 - $(1 - \lambda)\lambda^2 \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) - V(s_1))$, and so on
- Backward view:
 - $1 \cdot (r_1 + \gamma V(s_2) - V(s_1))$
 - $\lambda \gamma \cdot (r_2 + \gamma V(s_3) - V(s_2))$
 - $\lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) - V(s_3))$, and so on

1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$
2: for all $x \in \mathcal{X}$ do
3: $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
4: if $X = x$ then
5: $z[x] \leftarrow 1$
6: end if
7: $V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]$