Policy Gradient
Policy Gradient (PG)

- Given a class of parameterized policies π_θ, optimize
 \[J(\pi_\theta) := \mathbb{E}_{s \sim d_0}[V^{\pi_\theta}(s)] \]

- We will often make the dependence of π_θ on θ implicit, i.e., when we write π we mean π_θ in this part of the course.

- Simple idea: can run (stochastic) gradient descent if we can obtain (an unbiased estimate of) \(\nabla_\theta J(\pi_\theta) \)

 - will abbreviate as $J(\pi)$

- Beautiful result: an unbiased estimate can be obtained from a single on-policy trajectory, without using knowledge of P and R of the MDP!

- Has a strong connection to IS

- “Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo method—it does not leverage Bellman equation.
Why PG?

- RL methods can be categorized according to what we try to approximate: model-based RL, value-based RL, policy search
- Eventually we only care about a good policy!
- value-based RL is indirect (model-based even more)
- If a value function induces a good greedy policy, but the function itself severely violates Bellman equation, you won’t be able to find such a policy via value-based methods
- In other words, policy search is agnostic against misspecification of function approximation
 - Apart from difficulties in optimization, there is nothing that prevents policy search from finding the best policy in class
- Value- (and model-) based methods have their advantages—will come back later
Example of policy parametrization

- Linear + softmax:
 - Featurize state-action: \(\phi : S \times A \rightarrow \mathbb{R}^d \)
 - Policy: \(\pi(a | s) \propto e^{\theta^T \phi(s,a)} \)
- Recall that in SARSA we’ve also seen the softmax policy
- There we include a temperature parameter, \(\pi(a | s) \propto e^{\theta^T \phi(s,a)/T} \)
- Why the difference?
 - In TD, we want \(\theta^T \phi(s, a) \approx Q^\pi(s, a) \). We don’t have the freedom to rescale it; i.e., if \(\theta^T \phi(s, a) \approx Q^\pi(s, a) \), then \((2\theta)^T \phi(s, a) \neq Q^\pi(s, a) \).
 - We need an additional knob (T) to control the stochasticity of \(\pi \)
 - In PG, \(\theta^T \phi(s, a) \) does not carry any meaning—it’s totally possible that eventually we find a \(\theta \) but \(\theta^T \phi(s, a) \neq Q^{\pi\theta}(s, a) \!
 - That’s why we can absorb the temperature parameter in \(\theta \)
 - Reflection of the agnosticism of PG

\[\pi(a | s) \propto e^{\theta^T \phi(s,a)} \]

\[\theta^T \phi(s, a) \]
Derivation of PG

- Use $\tau := (s_1, a_1, r_1, \ldots, s_H, a_H, r_H)$ to denote a trajectory (episodic)
- Use $\tau \sim \pi$ as a shorthand for distribution induced by π
- Let $R(\tau) := \sum_{t=1}^{H} \gamma^{t-1} r_t$
- Ver 1: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi}[R(\tau) \sum_{t=1}^{H} \nabla \log \pi(a_t | s_t)]$
 - Will derive using a “MC”-style proof
- Ver 2: $\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[Q^\pi(s, a) \nabla \log \pi(a | s)]$
 - d^π is the normalized occupancy (from d_0 as init distribution)
 - Possible implementation: (1) roll out $\tau \sim \pi$, (2) pick a random time step t w.p. $\propto \gamma^{t-1}$, (3) $(\sum_{t'=t}^{H} \gamma^{t'-1} r_t) \nabla \log \pi(a_t | s_t)$
 - Note that $\mathbb{E}[\sum_{t'=t}^{H} \gamma^{t'-1} r_t | s_t, a_t] = Q^\pi(s_t, a_t)$
 - Take expectation over step (2) gives an alternative form: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi}[\sum_{t=1}^{H} (\sum_{t'=t}^{H} \gamma^{t'-1} r_t) \nabla \log \pi(a_t | s_t)]$
 - Will derive using a “DP”-style proof; can also be derived using the MC-style proof for ver 1
Pros & Cons of PG, and beyond

- Standard PG is fully on-policy, and it’s hard to reuse data
 - after each update step, the policy changes and we need to generate MC trajectories from the new policy
- in practice, it suffers from noisy gradient estimate
- Blend PG with value-based method:
 - \[\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)} [Q^\pi(s, a) \nabla \log \pi(a | s)] \]
 - Instead of using MC estimate \(\sum_{t'=t}^{H} \gamma^{t'-1} r_t \) for \(Q^\pi(s_t, a_t) \), use an approximate value-function \(\hat{Q}^\pi(s_t, a_t) \), often trained by TD
 - e.g., using expected Sarsa—can leverage previous (off-policy) data to learn \(\hat{Q}^\pi(s_t, a_t) \)
 - “Actor-critic”: the parametrized policy is called the actor, and the value-function estimate is called the critic
Baseline in PG

\[\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[Q^\pi(s, a) \nabla \log \pi(a \mid s)] \]

For any \(f: S \to \mathbb{R} \), \(\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[(Q^\pi(s, a) - f(s)) \nabla \log \pi(a \mid s)] \)

- for any \(s \), \(\mathbb{E}_{a \sim \pi(s)}[f(s) \nabla \log \pi(a \mid s)] = f(s) \cdot \mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a \mid s)] = 0 \)
- proof: \(\mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a \mid s)] = \sum_a \pi(a \mid s) \nabla \log \pi(a \mid s) \)
 \[= \sum_a \nabla \pi(a \mid s) = \nabla \sum_a \pi(a \mid s) = \nabla 1 = 0 \]

One choice: \(f = V^\pi(s) \)

\[\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[A^\pi(s, a) \nabla \log \pi(a \mid s)] \]

- recall that \(A \) is the advantage function
Comparing AC with Policy Iteration

- \(\nabla J(\pi) \approx \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi(a | s)] \)

- A different but related procedure: freeze \(\pi \), update the parameter of another policy \(\pi' \) (whose parameters are \(\theta' \)) by
 \[
 \theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi'(a | s)]
 \]

- gradient = 0 at \(\pi' = \pi_{Q^\pi} \) => policy iteration

- This can run into serious issues
 - Tabular PI theory assumes that we get \(\hat{Q}^\pi \) that is accurate for every single state-action pair
 - Simply unrealistic if problem is complex and we can only rollout trajectories (instead of sweeping the entire state space)
 - in the middle of learning, part of the state space may be under-explored
 - at best we can hope \(\hat{Q}^\pi \) to be accurate under distribution of state space we have data for
Comparing AC with Policy Iteration

- \(\nabla J(\pi) \approx \frac{1}{1-\gamma}\mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi(a \mid s)] \)

- A different but related procedure: freeze \(\pi \), update the parameter of another policy \(\pi' \) (whose parameters are \(\theta' \)) by
 \[
 \theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1-\gamma}\mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi'(a \mid s)]
 \]

- gradient = 0 at \(\pi' = \pi_{Q^\pi} \Rightarrow \) policy iteration

- This can run into serious issues
 - (cont.) if \(\pi' \) visits new states, \(\hat{Q}^\pi \) may be highly inaccurate in those states, and policy improvement no longer holds

- Perhaps better idea: move \(\pi' \) a little more but not too far from \(\pi \), so that their state occupancies are still similar.

- Theory: CPI [Kakade & Langford’02]

- Modern implementations & variants: TRPO, PPO, etc
RL Algorithms Landscape

policy search

- Policy Optimization
- Policy Gradients
- DFO / Evolution

value-based RL

- Dynamic Programming
 - Policy Iteration
 - Value Iteration
 - Q-Learning

Actor-Critic Methods

0-th order opt.

Slide Credit: Pieter Abbeel
Practical considerations

- Recall that one way to implement PG/AC is:
 1. roll out $\tau \sim \pi$,
 2. gradient from step t: $Q^\pi(s_t, a_t) \nabla \log \pi(a_t | s_t)$
 3. sum up the gradients from all time steps, with weight $\propto \gamma^{t-1}$,
- What if a trajectory length $>> 1/(1 - \gamma)$?
 - Most of the data points are wasted!
- Deep RL implementation in Atari games:
 - Trajectory length $= \sim 5$ min
 - Effective horizon $= \text{secs}$
 $\gamma = 0.99$, frame rate 60Hz \Rightarrow effective horizon $= O(1/(1-\gamma) \times 1/60) \sim \text{sec}$
Practical considerations

- Actual implementation:
 1. roll out $\tau \sim \pi$,
 2. gradient from step t: $Q^\pi(s_t, a_t) \nabla \log \pi(a_t | s_t)$
 3. put equal weights on gradients from all time steps
- Pro: use all data points; Con: biased gradient.
- Is there no discounting then?
 - $Q^\pi(s_t, a_t)$ is still learned using γ (e.g., by TD in actor-critic)
- How to understand/make sense of this?