Partially observable systems and Predictive State Representation (PSR)

Nan Jiang
CS 598 Statistical RL @ UIUC
Partially observable systems

- Key assumption so far: Markov property (Markovianness)
Partially observable systems

• Key assumption so far: Markov property (Markovianness)
• Real-world is non-Markov / partially observable (PO)
 - Or you wouldn’t need memory
Partially observable systems

• Key assumption so far: Markov property (Markovianness)
• Real-world is non-Markov / partially observable (PO)
 - Or you wouldn’t need *memory*
• Examples in ML

Alan Mathison Turing OBE FRS (/ˈtʊərɪŋ/; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist.[2] Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of *algorithm* and *computation* with the

 text modeling (last word cannot predict what’s next; need to capture long-term dependencies)
Partially observable systems

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn’t need *memory*
- Examples in ML

Partial observability

- Real-world
- Learning
 - Contingent
 - Region

Alan Mathison Turing OBE FRS (/ˈtɔːrɪŋ/; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the

Key Points

- Video prediction
 - Previous frame
 - Next frame

Examples in ML

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn’t need *memory*
- Examples in ML
Partially observable systems

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn’t need memory
- Examples in ML

\[\text{video prediction} \]

SLAM in robotics (“this place looks familiar; did I return to the same location?”)

“perceptual aliasing”
Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
Models of PO systems

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
Models of PO systems

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3 \ldots$ with randomness
Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
• Actions space A (omitted for simplicity)
• System starts from initial configuration, and outputs sequences $o_1 o_2 o_3 \ldots$ with randomness
• Markov systems is a special case:
Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
• Actions space A (omitted for simplicity)
• System starts from initial configuration, and outputs sequences $o_1 o_2 o_3 \ldots$ with randomness
• Markov systems is a special case:

$$
\Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_{\tau}]
$$
Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
• Actions space A (omitted for simplicity)
• System starts from initial configuration, and outputs sequences $o_1 o_2 o_3 \ldots$ with randomness
• Markov systems is a special case:
 \[
 \Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_{\tau}]
 \]
 or, $o_{\tau+1:\tau+k} \perp o_{1:\tau} \mid o_{\tau}$ (bold r.v.; non-bold realization)
• In words, last observation is sufficient statistics of history for predicting future observations
Models of PO systems

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3 \ldots$ with randomness
- Markov systems is a special case:

\[
\Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_\tau]
\]

or, $o_{\tau+1:\tau+k} \perp o_{1:\tau} \mid o_\tau$ (bold r.v.; non-bold realization)

- In words, last observation is sufficient statistics of history for predicting future observations
- How restrictive is Markov assumption?
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' \mid o)$
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' | o)$
 • # model parameters = $|O|^2$
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' | o)$
 • # model parameters = $|O|^2$
• Without Markov assumption?
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' | o)$
 • # model parameters = $|O|^2$
• Without Markov assumption?
 • System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:t}$)
Complexity of Markov vs non-Markov systems

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' | o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?
 - System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:\tau}$)
 - Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' | o)$
 • # model parameters = $|O|^2$

• Without Markov assumption?
 • System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:T}$)
 • Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!
 • Even with a finite and constant observation space, fully general dynamical systems are intractable
Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 • System fully specified by the transition matrix $T(o' | o)$
 • $\#$ model parameters $= |O|^2$

• Without Markov assumption?
 • System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:T}$)
 • Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!
 • Even with a finite and constant observation space, fully general dynamical systems are intractable
 • Need structure…
Partially observable systems

• Example structure: small & finite \textit{latent} state space
Partially observable systems

• Example structure: small & finite latent state space
• “this place looks familiar; did I return to the same location?”

SLAM in robotics (“this scene looks familiar; did I return to the same location?”)
Partially observable systems

• Example structure: small & finite latent state space
• “this place looks familiar; did I return to the same location?”
 • General PO system: you always visit a new location

SLAM in robotics (“this scene looks familiar; did I return to the same location?”)
Partially observable systems

- Example structure: small & finite latent state space
- “this place looks familiar; did I return to the same location?”
 - General PO system: you always visit a new location
 - With structural assumptions: the building only has this many different rooms. You will return to one or another.

SLAM in robotics (“this scene looks familiar; did I return to the same location?”)
Latent Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
 • SLAM example: current sensory inputs
Latent Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
 • SLAM example: current sensory inputs
• Action space A (again will ignore for simplicity in most places)
Latent Models of PO systems

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
 - SLAM example: true location
Latent Models of PO systems

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
 - SLAM example: true location
- Model parameters
 - Emission probability: $E(o | z)$
 - Transition probability: $T(z' | z, a)$
Latent Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
 • SLAM example: current sensory inputs
• Action space A (again will ignore for simplicity in most places)
• Latent/hidden state space Z
 • SLAM example: true location
• Model parameters
 • Emission probability: $E(o \mid z)$
 • Transition probability: $T(z' \mid z, a)$
• Markov chain is special case: identity emission
Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses information from “world state”
Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses information from “world state”
• Noisier sensors = more PO?
Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses information from “world state”
• Noisier sensors = more PO?
• Mathematically, if we fix the underlying MDP and vary the emission function, an emission that loses more information gives a more PO process?
Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses information from “world state”
• Noisier sensors = more PO?
• Mathematically, if we fix the underlying MDP and vary the emission function, an emission that loses more information gives a more PO process?
• Wrong: If emission discards all information, the process becomes Markov!
Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a POMDP”
Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a POMDP”
• …which assumes POMDP is fully general?
Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a POMDP”
• …which assumes POMDP is fully general?
• Not really: there are systems that can be succinctly represented but require infinitely many hidden states to be represented as a POMDP/HMM
Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a POMDP”
• …which assumes POMDP is fully general?
• Not really: there are systems that can be succinctly represented but require infinitely many hidden states to be represented as a POMDP/HMM
• Again, one most generic way to specify a PO system is just $\Pr[o' | o_{1:T}]$, or $\Pr[o' | h]$ for short (h for history)
Major challenge in PO systems: *state* representation

- Examples
Major challenge in PO systems: *state* representation

- Examples
 - Text prediction: how to *compactly summarize* the sentence so far to predict future words? (that’s what you are computing as the hidden vector in an LSTM)
Major challenge in PO systems: *state* representation

- **Examples**
 - Text prediction: how to *compactly summarize* the sentence so far to predict future words? (that’s what you are computing as the hidden vector in an LSTM)
 - SLAM: how to map history of sensor readings to physical locations (or a belief about it)
Major challenge in PO systems: *state* representation

- **Examples**
 - Text prediction: how to *compactly summarize* the sentence so far to predict future words? (that’s what you are computing as the hidden vector in an LSTM)
 - SLAM: how to map history of sensor readings to physical locations (or a belief about it)
 - What does state mean in the PO setting?
Major challenge in PO systems: state representation

• Examples
 • Text prediction: how to compactly summarize the sentence so far to predict future words? (that’s what you are computing as the hidden vector in an LSTM)
 • SLAM: how to map history of sensor readings to physical locations (or a belief about it)
• What does state mean in the PO setting?

Definition: State is a function of history, ϕ, that is a sufficient statistics for predicting future. That is, for all $t:=o_{\tau+1:\tau+k}$ and $h:=o_{1:\tau},$

$$\Pr[t \mid h] = \Pr[t \mid \phi(h)]$$
State!

- Trivial function that is state?
State!

• Trivial function that is state?
 • History itself (identity map): $\phi(h) = h$
State!

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later…
State!

- Trivial function that is state?
 - History itself (identity map): \(\phi(h) = h \)
 - There is another one. will reveal later…
- For HMMs/POMDPs, belief state, \((\Pr[z_{\tau=z} \mid h])_{z \in Z}\), is state
State!

• Trivial function that is state?
 • History itself (identity map): $\phi(h) = h$
 • There is another one. will reveal later…

• For HMMs/POMDPs, belief state, $(\Pr[z_\tau=z \mid h])_{z \in Z}$, is state

• To an old-school RL person, be careful when you say “state” without a modifier…
State!

• Trivial function that is state?
 • History itself (identity map): $\phi(h) = h$
 • There is another one. will reveal later…
• For HMMs/POMDPs, belief state, $(\Pr[z_{\tau=z} \mid h])_{z \in Z}$, is state
• To an old-school RL person, be careful when you say “state” without a modifier…
• Things that are not states and people call “state”
State!

• Trivial function that is state?
 • History itself (identity map): $\phi(h) = h$
 • There is another one. will reveal later…

• For HMMs/POMDPs, belief state, $(Pr[z_\tau = z \mid h])_{z \in Z}$, *is state*

• To an old-school RL person, be careful when you say “state” without a modifier…

• Things that are not states and people call “state”
 • Observation: e.g., Atari game frame
State!

- Trivial function that is state?
 - History itself (identity map): \(\phi(h) = h \)
 - There is another one. will reveal later…

- For HMMs/POMDPs, belief state, \((\Pr[z_{\tau} = z \mid h])_{z \in Z} \), is state

- To an old-school RL person, be careful when you say “state” without a modifier…

- Things that are not states and people call “state”
 - Observation: e.g., Atari game frame
 - Hidden state (“World state”): Why?
State!

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later…

- For HMMs/POMDPs, belief state, $(\Pr[z_\tau = z | h])_{z \in Z}$, is state

- To an old-school RL person, be careful when you say “state” without a modifier…

- Things that are not states and people call “state”
 - Observation: e.g., Atari game frame
 - Hidden state (“World state”) : not a function of history
State!

• Trivial function that is state?
 • History itself (identity map): $\phi(h) = h$
 • There is another one. will reveal later…

• For HMMs/POMDPs, belief state, $(Pr[z_\tau = z \mid h])_{z \in Z}$, is state

• To an old-school RL person, be careful when you say “state” without a modifier…

• Things that are not states and people call “state”
 • Observation: e.g., Atari game frame
 • Hidden state (“World state”): not a function of history
 • Agent state: can be approximately a state
Issues with Latent Variable Models

• Typical learning algorithm for HMMs: EM
Issues with Latent Variable Models

• Typical learning algorithm for HMMs: EM
• Subject to local optimum
Issues with Latent Variable Models

• Typical learning algorithm for HMMs: EM
• Subject to local optimum
• More deeply: hidden state is an *ungrounded* object. If we re-order the hidden state, that gives exactly the same process (over observables)!
Issues with Latent Variable Models

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an *ungrounded* object. If we reorder the hidden state, that gives exactly the same process (over observables)!
- World state is illusion; all matters is our sensory-motor experience. “*to be is to be perceived*” (George Berkeley)
Issues with Latent Variable Models

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an \textit{ungrounded} object. If we reorder the hidden state, that gives exactly the same process (over observables)!
- World state is illusion; all matters is our sensory-motor experience. \textit{“to be is to be perceived”} (George Berkeley)
- But how to inject structure???
The system dynamics matrix M
The system dynamics matrix M

- Recall that $\Pr[o' | h]$ fully specifies a PO system.
The system dynamics matrix M

- Recall that $\Pr[o' \mid h]$ fully specifies a PO system.
- Alternatively, $\Pr[h]$ also does the job (with some redundancy; can you tell?)
The system dynamics matrix M

- Recall that $Pr[o' | h]$ fully specifies a PO system.
- Alternatively, $Pr[h]$ also does the job (w/ some redundancy; can you tell?)
- Let’s stack them in a matrix
The system dynamics matrix M

- Recall that $Pr[o' | h]$ fully specifies a PO system.
- Alternatively, $Pr[h]$ also does the job (w/ some redundancy; can you tell?)
- Let’s stack them in a matrix
The system dynamics matrix M

- Recall that $\Pr[o' \mid h]$ fully specifies a PO system.
- Alternatively, $\Pr[h]$ also does the job (w/ some redundancy; can you tell?)
- Let's stack them in a matrix
- Claim: For HMM with n hidden states, the rank of this matrix is at most n
The system dynamics matrix M

- Recall that $\Pr[o' \mid h]$ fully specifies a PO system.
- Alternatively, $\Pr[h]$ also does the job (w/ some redundancy; can you tell?)
- Let's stack them in a matrix
- Claim: For HMM with n hidden states, the rank of this matrix is at most n

See project ref page for classical refs for PSRs

http://nanjiang.cs.illinois.edu/cs598project/
Low-rankness of SDM

• Proof: for any past h and future t, let the current timestep be τ

\[
\Pr[ht] = \sum_{z \in Z} \Pr[ht, z_\tau = z]
= \sum_{z \in Z} \Pr[h, z_\tau = z] \Pr[t | z_\tau = z, h]
= \sum_{z \in Z} \Pr[h, z_\tau = z] \Pr[t | z_\tau = z].
\]
Low-rankness of SDM

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[h,t] = \sum_{z \in \mathbb{Z}} \Pr[h,t, z_{\tau} = z]$$

$$= \sum_{z \in \mathbb{Z}} \Pr[h, z_{\tau} = z] \Pr[t \mid z_{\tau} = z, h]$$

$$= \sum_{z \in \mathbb{Z}} \Pr[h, z_{\tau} = z] \Pr[t \mid z_{\tau} = z].$$

• Dot-product between two vectors of dimension $|\mathbb{Z}|$: one only depends on history and the other only depends on future—implies low-rankness
Low-rankness of SDM

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, z_\tau = z]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, z_\tau = z] \Pr[t \mid z_\tau = z, h]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, z_\tau = z] \Pr[t \mid z_\tau = z].$$

• Dot-product between two vectors of dimension $|\mathcal{Z}|$: one only depends on history and the other only depends on future—implies low-rankness

• rank of SDM is known as the *linear dimension* of the system
Low-rankness of SDM

- Proof: for any past h and future t, let the current timestep be τ

\[
\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, z_\tau = z] = \sum_{z \in \mathcal{Z}} \Pr[h, z_\tau = z] \Pr[t | z_\tau = z, h] = \sum_{z \in \mathcal{Z}} \Pr[h, z_\tau = z] \Pr[t | z_\tau = z].
\]

- Dot-product between two vectors of dimension $|\mathcal{Z}|$: one only depends on history and the other only depends on future—implies low-rankness

- rank of SDM is known as the *linear dimension* of the system

- Can we directly work with systems whose SDM has low-rank, instead of going through the latent variable route???
past

\[\Pr(\text{future}) \]

future
past

\[\Pr(\varepsilon) \]

future

\[\Pr(\varepsilon) \]

\[\Pr(\varepsilon) \]

\[\Pr(\varepsilon) \]

\[\Pr(\varepsilon) \]
The SDM M is a Hankel matrix.
maximal rank

\(B \)

past

\(\varepsilon \)

future

\(\vdots \)
maximal rank

B

future

past
past

maximal rank

\(B \)

future

\(\varepsilon \)
maximal rank

\(\varepsilon \)

future

future

B

B

B

past
maximal rank
\[P(o_1 \ldots o_l) = b_\infty^T \times B_{o_1} \times \cdots \times B_{o_1} \times \]
\[P(o_1 \ldots o_l) = b_\infty^T \times B_{o_1} \times \cdots \times B_{o_1} \times \]
\[
\text{Pr}[o_1 \ldots o_l] = b_\infty^\top \times \begin{bmatrix} B_{o_1} \\ \vdots \end{bmatrix} \times b_*
\]
Non-spectral algorithm use \((\mathcal{T}, \mathcal{H})\) of just size so that \(P_{\mathcal{T}, \mathcal{H}}\) is invertible.

\[
\begin{align*}
 b_\infty &= P_{\mathcal{T}, \varepsilon} \\
 B_o &= P_{o\mathcal{T}, \mathcal{H}}(P_{\mathcal{T}, \mathcal{H}})^{-1} \\
 b_\infty^T &= P_{\varepsilon, \mathcal{H}}(P_{\mathcal{T}, \mathcal{H}})^{-1}
\end{align*}
\]

\[
\Pr[o_1 \ldots o_l] = b_\infty^T \times P_{\mathcal{T}, \mathcal{H}} \times \cdots \times P_{\mathcal{T}, \mathcal{H}} \times b_*
\]
Spectral algorithm
Use large \((\mathcal{T}, \mathcal{H})\), and let \(U\) consists of \text{rank}(M) leading left singular vectors of \(P_{\mathcal{T}, \mathcal{H}}\)

\[
b_* = U^T P_{\mathcal{T}, \mathcal{H}}
\]

\[
B_o = U^T P_{o \mathcal{T}, \mathcal{H}} (U^T P_{\mathcal{T}, \mathcal{H}})^+
\]

\[
b_\infty = U^T P_{\epsilon, \mathcal{H}} (U^T P_{\mathcal{T}, \mathcal{H}})^+
\]

\[
\Pr[o_1 \ldots o_l] = b_\infty^T \times \begin{bmatrix} B_{o_1} \end{bmatrix} \times \cdots \times \begin{bmatrix} B_{o_1} \end{bmatrix} \times b_*
\]
The predictive interpretation

- The semantics of the state representation used in PSR: $P_{T|h}$
The predictive interpretation

- The semantics of the state representation used in PSR: $P_T|h$
- Or its linear transformation $U^T P_T|h$
The predictive interpretation

- The semantics of the state representation used in PSR: $P_T|h$
- Or its linear transformation $U^T P_T|h$
- Cond. prob. of a set of future events given the history h
The predictive interpretation

- The semantics of the state representation used in PSR: $P_T|h$
- Or its linear transformation $U^T P_T|h$
- Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
The predictive interpretation

- The semantics of the state representation used in PSR: $P_T|h$
 - Or its linear transformation $U^TP_T|h$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
The predictive interpretation

• The semantics of the state representation used in PSR: $P_{T|h}$
 • Or its linear transformation $U^T P_{T|h}$
 • Cond. prob. of a set of future events given the history h
• Earlier question: what is the other trivial function that is always state???
• Answer: (exact) predictions of all future events is trivially state
• If $\phi(h) = \{\Pr[t'|h]\}_{t' \in O^*}$, then $\Pr[t \mid h] = \Pr[t \mid \phi(h)]$, trivially
The predictive interpretation

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
- Or its linear transformation $U^T P_{\mathcal{T}|h}$
- Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
- If $\phi(h) = \{\Pr[t'|h]\}_{t' \in \mathcal{O}^*}$, then $\Pr[t|h] = \Pr[t | \phi(h)]$, trivially
- But this ϕ is infinite-dimensional and difficult to work with
The predictive interpretation

• The semantics of the state representation used in PSR: $P_{T|h}$
• Or its linear transformation $U^TP_{T|h}$
• Cond. prob. of a set of future events given the history h
• Earlier question: what is the other trivial function that is always state???
• Answer: (exact) predictions of all future events is trivially state
• If $\phi(h) = \{\Pr[t'|h]\}_{t' \in O^*}$, then $\Pr[t|h] = \Pr[t|\phi(h)]$, trivially
• But this ϕ is infinite-dimensional and difficult to work with
• PSR: when system has certain low-rank structure, the infinite-dimensional object is uniquely determined by a subset of its coordinates, which is tractable.
Non-spectral algorithm use \((\mathcal{T}, \mathcal{H})\) of just size so that
\(P_{\mathcal{T}, \mathcal{H}}\) is invertible.

\[
\begin{align*}
\mathbf{b}_* &= P_{\mathcal{T}, \epsilon} \\
\mathbf{B}_o &= P_{o\mathcal{T}, \mathcal{H}}(P_{\mathcal{T}, \mathcal{H}})^+ \\
\mathbf{b}_\infty^T &= P_{\epsilon, \mathcal{H}}(P_{\mathcal{T}, \mathcal{H}})^+
\end{align*}
\]

2-stage regression view [Hefny, Downey, Gordon 2015]
2-stage regression view [Hefny, Downey, Gordon 2015]

- Col. of $P_{T,H} (P_{oT,H})$ indexed by h is prop. to estimated state of h (h_o)
Non-spectral algorithm use \((\mathcal{T},\mathcal{H})\) of just size so that \(P_{\mathcal{T},\mathcal{H}}\) is invertible.

\[
\begin{align*}
 b_* &= P_{\mathcal{T},\epsilon} \\
 B_o &= P_{o\mathcal{T},\mathcal{H}}(P_{\mathcal{T},\mathcal{H}})^+ \\
 b_{\infty}^T &= P_{\epsilon,\mathcal{H}}(P_{\mathcal{T},\mathcal{H}})^+
\end{align*}
\]

2-stage regression view [Hefny, Downey, Gordon 2015]

- Col. of \(P_{T,H} (P_{oT,H})\) indexed by \(h\) is prop. to estimated state of \(h (ho)\)
- Use regression (here mat inv) to learn the evolution of state given \(o\)
Non-spectral algorithm
use \((\mathcal{T}, H)\) of just size so that
\(P_{\mathcal{T}, H}\) is invertible.

\[
\begin{align*}
b_* & = P_{\mathcal{T}, \epsilon} \\
B_o & = P_{o\mathcal{T}, H} \left(P_{\mathcal{T}, H} \right)^+ \\
b_\infty & = P_{\epsilon, H} \left(P_{\mathcal{T}, H} \right)^+
\end{align*}
\]

2-stage regression view [Hefny, Downey, Gordon 2015]
- Col. of \(P_{\mathcal{T}, H} (P_{o\mathcal{T}, H})\) indexed by \(h\) is prop. to estimated state of \(h (ho)\)
- Use regression (here mat inv) to learn the evolution of state given \(o\)
- \(|H|\) input-output pairs, each input & output are vectors in \(\mathbb{R}^{|T|}\)
Connections to HMMs

- Recall \(\Pr[o_1\ldots o_l] = b_\infty^\top \times \begin{bmatrix} B_{o_l} \end{bmatrix} \times \cdots \times \begin{bmatrix} B_{o_1} \end{bmatrix} \times b_* \)
Connections to HMMs

- Recall \(\Pr[o_1 \ldots o_l] = b_\infty^\top \times \begin{bmatrix} B_{o_l} \end{bmatrix} \times \cdots \times \begin{bmatrix} B_{o_1} \end{bmatrix} \times b_* \)

- HMM can be converted into such a parametrization
Connections to HMMs

- Recall \(\Pr[o_1 \ldots o_l] = b^\top \times B_{o_l} \times \cdots \times B_{o_1} \times b_* \)

- HMM can be converted into such a parametrization

- For an HMM with transition \(T \), emission \(E \), initial dist. \(\pi \),
Connections to HMMs

- Recall \(\Pr[o_1 \ldots o_l] = b_\infty^\top \times B_{o_l} \times \cdots \times B_{o_1} \times b_* \)

- HMM can be converted into such a parametrization

- For an HMM with transition \(T \), emission \(E \), initial dist. \(\pi \),

 \(b_* = \pi \), \(B_0 = T \, \text{diag}\{E_{o|z^{(1)}}, \ldots, E_{o|z^{(l\mid Z)}}\} \), \(b_\infty = 1 \)
Connections to HMMs

• Recall \(\Pr[o_1 \ldots o_l] = b_\infty ^\top \times \prod B_{o_l} \times \cdots \times B_{o_1} \times b_* \)

• HMM can be converted into such a parametrization

• For an HMM with transition \(T \), emission \(E \), initial dist. \(\pi \),
 • \(b_* = \pi \), \(B_0 = T \text{ diag}\{E[o \mid z^{(1)}], \ldots, E[o \mid z^{(l|Z)]}\} \), \(b_\infty = 1 \)
 • “Observable Operator Model (OOM)”
Connections to HMMs

- Recall: \[\Pr[o_1\ldots o_l] = b_\infty^\top \times B_{o_1} \times \cdots \times B_{o_l} \times b^* \]

- HMM can be converted into such a parametrization
- For an HMM with transition \(T \), emission \(E \), initial dist. \(\pi \),
 - \(b^* = \pi \), \(B_0 = T \ diag\{E[o \mid z^{(1)}], \ldots, E[o \mid z^{(l[\mathcal{Z}])}]\} \), \(b_\infty = 1 \)
- “Observable Operator Model (OOM)”
 - informally, PSRs without a predictive semantics
Connections to HMMs

- Recall $\Pr[o_1...o_l] = b_\infty^\top \times \begin{bmatrix} B_{o_l} \end{bmatrix} \times \cdots \times \begin{bmatrix} B_{o_1} \end{bmatrix} \times b_*$

- HMM can be converted into such a parametrization

- For an HMM with transition T, emission E, initial dist. π,
 - $b_* = \pi$, $B_0 = T \text{ diag}\{E[o \mid z^{(1)}], \ldots, E[o \mid z^{(lZ)}]\}$, $b_\infty = 1$

- “Observable Operator Model (OOM)”
 - informally, PSRs without a predictive semantics
 - …Really?
Connections to HMMs

• Recall $\Pr[o_1...o_l] = b_\infty^\top \times \begin{bmatrix} B_0 \\ \vdots \\ B_0 \end{bmatrix} \times b_*$

• HMM can be converted into such a parametrization

• For an HMM with transition T, emission E, initial dist. π,
 • $b_* = \pi$, $B_0 = T \, \text{diag}\{E[o|z^{(1)}], \ldots, E[o|z^{(lZ)}]\}$, $b_\infty = 1$

• “Observable Operator Model (OOM)”
 • informally, PSRs without a predictive semantics
 • …Really?
 • (informally) any state representation that can predict $\Pr[o'|h]$ using a linear rule is a (transformed) PSR! (see appendix of my NeurIPS paper this year)
Connections to HMMs

- Recall \(\Pr[o_1 \ldots o_l] = b^\top \times \prod B_{o_l} \times \cdots \times B_{o_1} \times b_* \)

- HMM can be converted into such a parametrization

- For an HMM with transition \(T \), emission \(E \), initial dist. \(\pi \),
 - \(b_* = \pi \), \(B_o = T \ diag\{E[o \mid z^{(1)}], \ldots, E[o \mid z^{(|Z|)}]\} \), \(b_\infty = 1 \)

- “Observable Operator Model (OOM)”
 - informally, PSRs without a predictive semantics
 - …Really?
 - (informally) any state representation that can predict \(\Pr[o' \mid h] \) using a linear rule is a (transformed) PSR! (see appendix of my NeurIPS paper this year)

- Also known under the name Weighted Finite Automata (WFA)
Let f be the one-hot encoding of the last observation for an MC. Assume the transition matrix of the MC, T, is invertible. Define \mathcal{T} as the set of length-1 sequences, then:

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$
Let f be the one-hot encoding of the last observation for an MC. Assume the transition matrix of the MC, T, is invertible. Define \mathcal{T} as the set of length-1 sequences, then:

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

Example: Markov Chain

$$
\begin{bmatrix}
 o \\
 \vdots \\
 \vdots \\
 P(o'|o) \\
 \vdots \\
 \vdots \\
 o' \\
 \cdots
\end{bmatrix}

T

P_{\mathcal{T}|h}

for h ending in o
Let f be the one-hot encoding of the last observation for an MC. Assume the transition matrix of the MC, T, is invertible. Define \mathcal{T} as the set of length-1 sequences, then

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$
Example: Markov Chain

Let f be the one-hot encoding of the last observation for an MC. Assume the transition matrix of the MC, T, is invertible. Define \mathcal{T} as the set of length-1 sequences, then:

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

For h ending in o:

$$o' \begin{bmatrix} \vdots \\ P(o'|o) \end{bmatrix} T^{-1} P_{\mathcal{T}|h} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

\begin{align*}
\begin{bmatrix} o \\ \vdots \\ o' \end{bmatrix} & \begin{bmatrix} P(o'|o) \\ \vdots \\ \vdots \\ P(o'|o) \end{bmatrix} \\
& = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
\end{align*}
What systems fall in PSRs \ HMMs?

- Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$
What systems fall in PSRs \ HMMs?

- Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$
- Not vice versa: there exists PSR with constant size that cannot be represented by any HMM with finitely many hidden states
What systems fall in PSRs \ HMMs?

- Recall that HMMs with \(n \) states has an SDM with rank \(\leq n \), hence can be represented by a PSR with rank \(\leq n \).
- Not vice versa: there exists PSR with constant size that cannot be represented by any HMM with finitely many hidden states.
- “Probability lock”: 0-1 sequence where the probability of 1 appearing next goes like a sine wave sampled at an interval that is not a rational multiple of the wave’s period; see Jaeger [2000] for details.
Controlled systems

- Almost everything extend straightforwardly
Controlled systems

• Almost everything extend straightforwardly
• … as long as you know how to define SDM
Controlled systems

- Almost everything extend straightforwardly
 - … as long as you know how to define SDM
- \(\text{Pr}[o_1...o_l] \) specifies an uncontrolled system
Controlled systems

• Almost everything extend straightforwardly
 • … as long as you know how to define SDM
• Pr[\(o_1...o_l]\) specifies an uncontrolled system
 • Pr[\(o_1...o_l || a_0...a_{l-1}\)] specifies a controlled system
Controlled systems

• Almost everything extend straightforwardly
 • … as long as you know how to define SDM

• $\text{Pr}[o_1...o_l]$ specifies an uncontrolled system
 • $\text{Pr}[o_1...o_l || a_0...a_{l-1}]$ specifies a controlled system
 • Actions are not r.v. (unless we fix a policy); they are interventions
Controlled systems

- Almost everything extend straightforwardly
 - … as long as you know how to define SDM
- \(\Pr[o_1...o_l] \) specifies an uncontrolled system
 - \(\Pr[o_1...o_l \mid a_0...a_{l-1}] \) specifies a controlled system
- Actions are not r.v. (unless we fix a policy); they are interventions
- “If I were to take \(a_0...a_{l-1} \), what’s the odds that I see \(o_1...o_l \)?”
Controlled systems

• Almost everything extend straightforwardly
 • … as long as you know how to define SDM
• \(\text{Pr}[o_1...o_l] \) specifies an uncontrolled system
 • \(\text{Pr}[o_1...o_l || a_0...a_{l-1}] \) specifies a controlled system
 • Actions are not r.v. (unless we fix a policy); they are interventions
 • “If I were to take \(a_0...a_{l-1} \), what’s the odds that I see \(o_1...o_l \)?”
• Does it restrict us to open-loop policies? Answer: no.
Controlled systems

• Almost everything extend straightforwardly
 • … as long as you know how to define SDM
• $\Pr[o_1...o_l]$ specifies an uncontrolled system
 • $\Pr[o_1...o_l | a_0...a_{l-1}]$ specifies a controlled system
 • Actions are not r.v. (unless we fix a policy); they are interventions
 • “If I were to take $a_0...a_{l-1}$, what’s the odds that I see $o_1...o_l$?”
• Does it restrict us to open-loop policies? Answer: no.
• Conditional: $\Pr[\text{obs}(t) | h \parallel do \text{ act}(t)]$
Controlled systems

• Almost everything extend straightforwardly
 • … as long as you know how to define SDM
• $\Pr[o_1...o_l]$ specifies an uncontrolled system
 • $\Pr[o_1...o_l | a_0...a_{l-1}]$ specifies a controlled system
 • Actions are not r.v. (unless we fix a policy); they are interventions
 • “If I were to take $a_0...a_{l-1}$, what’s the odds that I see $o_1...o_l$?”
• Does it restrict us to open-loop policies? Answer: no.
• Conditional: $\Pr[\text{obs}(t) | h || \text{do act}(t)]$
 • $\text{obs}().$ and $\text{act}().$ omit actions and obs., respectively
Controlled systems

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $\Pr[o_1...o_l]$ specifies an uncontrolled system
 - $\Pr[o_1...o_l | a_0...a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are *interventions*
 - “If I were to take $a_0...a_{l-1}$, what’s the odds that I see $o_1...o_l$?”
- Does it restrict us to open-loop policies? Answer: no.
- Conditional: $\Pr[\text{obs}(t) | h || \text{do act}(t)]$
 - obs(.) and act(.) omit actions and obs., respectively
 - what you’ve done in the past are factual; *what you could do in the future are counterfactual*
Controlled systems

- Almost everything extend straightforwardly
 - … as long as you know how to define SDM
- $\Pr[o_1…o_l]$ specifies an uncontrolled system
 - $\Pr[o_1…o_l || a_0…a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - “If I were to take $a_0…a_{l-1}$, what’s the odds that I see $o_1…o_l$?”
- Does it restrict us to open-loop policies? Answer: no.
- Conditional: $\Pr[obs(t) | h || do act(t)]$
 - obs(.) and act(.) omit actions and obs., respectively
 - what you’ve done in the past are factual; what you could do in the future are counterfactual
- Hence t stands for “test”: take actions to probe the response of the system
Controlled systems

- Almost everything extend straightforwardly
 - … as long as you know how to define SDM
- \(\Pr[o_1\ldots o_l] \) specifies an uncontrolled system
 - \(\Pr[o_1\ldots o_l \mid a_0\ldots a_{l-1}] \) specifies a controlled system
- Actions are not r.v. (unless we fix a policy); they are interventions
- “If I were to take \(a_0\ldots a_{l-1} \), what’s the odds that I see \(o_1\ldots o_l \)?”
- Does it restrict us to open-loop policies? Answer: no.
- Conditional: \(\Pr[\text{obs}(t) \mid h \mid \text{do act}(t)] \)
 - \(\text{obs}(.) \) and \(\text{act}(.) \) omit actions and obs., respectively
 - what you’ve done in the past are factual; \emph{what you could do in the future are counterfactual}
- Hence \(t \) stands for “\textbf{test}”: take actions to probe the response of the system
- Dynamical system research is inherently related to causality
Controlled systems

- Almost everything extend straightforwardly
 - … as long as you know how to define SDM
- $\Pr[o_1…o_l]$ specifies an uncontrolled system
 - $\Pr[o_1…o_l || a_0…a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are *interventions*
 - “If I were to take $a_0…a_{l-1}$, what’s the odds that I see $o_1…o_l$?”
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: $\Pr[\text{obs}(t) \mid h \mid \text{do } \text{act}(t)]$
 - obs(.) and act(.) omit actions and obs., respectively
 - what you’ve done in the past are factual; *what you could do in the future are counterfactual*
 - Hence t stands for “*test*”: take actions to probe the response of the system
- Dynamical system research is inherently related to causality
 - e.g., off-policy eval with unknown behavior policy
Challenges in PSRs
Challenges in PSRs

- Moment matching algorithm; no optimization
Challenges in PSRs

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
Challenges in PSRs

• Moment matching algorithm; no optimization
 • sensitive to model mismatch
• Rely on linearity
Challenges in PSRs

• Moment matching algorithm; no optimization
 • sensitive to model mismatch
• Rely on linearity
 • some ideas extend to nonlinear but little can be said theoretically
Challenges in PSRs

• Moment matching algorithm; no optimization
 • sensitive to model mismatch
• Rely on linearity
 • some ideas extend to nonlinear but little can be said theoretically
• Cannot handle rich/continuous observations well
Challenges in PSRs

• Moment matching algorithm; no optimization
 • sensitive to model mismatch

• Rely on linearity
 • some ideas extend to nonlinear but little can be said theoretically

• Cannot handle rich/continuous observations well
 • Aim to learn $\Pr[o_1...o_l]$
Challenges in PSRs

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $Pr[o_1...o_t]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)
Challenges in PSRs

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $\Pr[o_1...o_l]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)
 - There are a lot of details that we don’t care—need to factor that into PSR theory
Challenges in PSRs

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $\Pr[o_1...o_l]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)
 - There are a lot of details that we don’t care—need to factor that into PSR theory
- When combined with planning, the approach is model-based RL (which isn’t working quite well yet in the era of deep RL)