CS 598 Statistical Reinforcement Learning

Nan Jiang
08/28/2018

If you are not registered for the class, please take a seat after class begins. Thanks!
Run > Hide > Fight
Emergencies can happen anywhere and at any time. It is important that we take a minute to prepare for a situation in which our safety or even our lives could depend on our ability to react quickly. When we’re faced with almost any kind of emergency – like severe weather or if someone is trying to hurt you – we have three options: Run, hide or fight.

Run
Leaving the area quickly is the best option if it is safe to do so.
- Take time now to learn the different ways to leave your building.
- Leave personal items behind.
- Assist those who need help, but consider whether doing so puts yourself at risk.
- Alert authorities of the emergency when it is safe to do so.

Hide
When you can’t or don’t want to run, take shelter indoors.
- Take time now to learn different ways to seek shelter in your building.
- If severe weather is imminent, go to the nearest indoor storm refuge area.
- If someone is trying to hurt you and you can’t evacuate, get to a place where you can’t be seen, lock or barricade your area if possible, silence your phone, don’t make any noise and don’t come out until you receive an Illini-Alert indicating it is safe to do so.

Fight
As a last resort, you may need to fight to increase your chances of survival.
- Think about what kind of common items are in your area which you can use to defend yourself.
- Team up with others to fight if the situation allows.
- Mentally prepare yourself – you may be in a fight for your life.

Please be aware of people with disabilities who may need additional assistance in emergency situations.

Other resources
- police.illinois.edu/safe for more information on how to prepare for emergencies, including how to run, hide or fight and building floor plans that can show you safe areas.
- emergency.illinois.edu to sign up for Illini-Alert text messages.
- Follow the University of Illinois Police Department on Twitter and Facebook to get regular updates about campus safety.
LOOKING FOR FUNDING? SCHOLARSHIPS? FELLOWSHIPS?

Mark your calendar for these upcoming deadlines:

September 5 NEW! FLIP Fellows
September 5 John Deere WCS Scholarship ($2,000 x4!)
September 5 JPMorgan Chase WCS Scholarship ($2,500 x2!)
September 5 NEW! IMC Trading Scholarship ($7,500 x2!)
October 1 NEW! Ada Lovelace Fellowship

Find details at: http://go.cs.illinois.edu/AwardDeadlines

Questions? Contact Samantha at shendon@illinois.edu

ILLINOIS Computer Science
Overview
What’s this course about?

• A grad-level seminar course on theory of RL
• with focus on sample complexity analyses
• proofs, proofs, and nothing else (not exactly but you get the idea)
• Seminar course can be anywhere between students presenting papers and a rigorous course
 • In this course I will deliver most (or all) of the lectures
 • I create my own material and this is the first time I teach this class, so things are not always polished
 • I will share slides. I will also do whiteboard proofs (maybe with OneNote so that I can share electronically)
Example of what we will get to...

\[\|V_f - V_{f_k}\|_\nu^2 = \int_{\mathcal{X}} (\max_{a \in A} f(x, a) - \max_{a' \in A} f_k(x, a'))^2 \nu(x) dx \]
\[\leq \int_{\mathcal{X}} (f(x, \pi_{f,f_k}(x)) - f_k(x, \pi_{f,f_k}(x)))^2 \nu(x) dx = \|f - f_k\|_{\nu \times \pi_{f,f_k}}. \]

Now we can bound \(\|f^* - f_k\|_{\nu \times \pi}\) using Lemma 1:

\[\|f_k - f^*\|_{\nu \times \pi} = \|f_k - \mathcal{T} f_{k-1} + \mathcal{T} f_{k-1} - f^*\|_{\nu \times \pi} \]
\[\leq \|f_k - \mathcal{T} f_{k-1}\|_{\nu \times \pi} + \|\mathcal{T} f_{k-1} - f^*\|_{\nu \times \pi} \]
\[\leq \sqrt{|A| C} \|f_k - \mathcal{T} f_{k-1}\|_{\mu \times U} + \gamma \|V_{f_{k-1}} - V^*\|_{P(\nu \times \pi)} \]
(passing through the dynamics)
\[\leq \sqrt{|A| C} \|f_k - \mathcal{T} f_{k-1}\|_{\mu \times U} + \gamma \|f_{k-1} - f^*\|_{P(\nu \times \pi) \times \pi_{f_{k-1}, f^*}}. \]

(Lemma 1)

Here \(P(\cdot)\) is defined by the following generative procedure: \(x' \sim P(\cdot) \Leftrightarrow x \sim (\cdot), x' \sim P(\cdot|x, a)\).

Note that we can apply the same analysis on \(P(\nu \times \pi) \times \pi_{f_{k-1}, f^*}\) and expand the inequality \(k\) times. It then suffices to upper bound \(\|f_k - \mathcal{T} f_{k-1}\|_{\mu \times U}\).

\[\|f_k - \mathcal{T} f_{k-1}\|_{\mu \times U}^2 = L_{\mu \times U}(f_k; f_{k-1}) - L_{\mu \times U}(\mathcal{T} f_{k-1}; f_{k-1}) \]
\[\leq L_D(f_k; f_{k-1}) - L_D(\mathcal{T} f_{k-1}; f_{k-1}) + 2\epsilon \]
\[\leq 2\epsilon. \]

(f_k minimizes \(L_D(\cdot; f_{k-1})\))

Note that the RHS does not depend on \(k\), so we conclude that

\[\|f_k - f^*\|_{\nu \times \pi} \leq \frac{1 - \gamma^k}{1 - \gamma} \sqrt{2 |A| C \epsilon} + \gamma^k \frac{R_{\max}}{1 - \gamma}. \]

Apply this to Equation 1 and we get

\[v^* - v^\pi_{f_k} \leq \frac{2}{1 - \gamma} \left(\frac{1 - \gamma^k}{1 - \gamma} \sqrt{2 |A| C \epsilon} + \gamma^k \frac{R_{\max}}{1 - \gamma} \right). \]
Who should take this course?

• This course will be a good fit for you if you…
 • are interested in understanding RL mathematically
 • want to do research in theory of RL or related area
 • want to work with me
 • are comfortable with maths

• This course will not be a good fit if you…
 • are mostly interested in implementing RL algorithms and making things to work
 we won’t cover any engineering tricks (which are essential to e.g., Deep RL); check other RL courses offered across the campus—I believe some are much more empirical
Prerequisites

• Maths
 • Linear algebra, probability & statistics, basic calculus
 • Markov chains
 • Optional: stochastic processes, numerical analysis
 • Useful for research: TCS background, empirical processes and statistical learning theory, optimization, online learning

• Exposure to ML
 • e.g., CS 446 Machine Learning
 • Experience with RL
Coursework

• Some readings after/before class

• Ad hoc homework to help digest particular material. Deadline will be lenient & TBA at the time of assignment

• Main assignment: course project
 • Baseline: reproduce theoretical analysis in existing papers
 • Advanced: identify an interesting/challenging extension to the paper and explore the novel research question yourself
 • Or, just work on a novel research question (need to talk with me)

• Work on your own. Working in pairs might be allowed; TBA after course registration becomes stable.
Course project (cont.)

• I will give a list of references and potential topics within the first month (hopefully sooner).

• You will need to submit:
 • A brief proposal (~1/2 page). Tentative deadline: end of Oct
 • what’s the topic and what papers you plan to work on
 • why you choose the topic: what interest you?
 • which aspect(s) you will focus on?
 • Final report: clarity, precision, and brevity are greatly valued. More details to come…
 • All docs should be in pdf. Final report should be prepared using LaTeX.
Course project (cont. 2)

Rule of thumb

1. Learn something that interests you
2. Teach me something! (I wouldn’t learn if I could not understand your report due to lack of clarity)
3. Write a report similar to (or better than!) the notes I will share with you
Contents of the course

• See website

• lectures are highly tilted—many important topics in RL will not be covered in depth (e.g., TD). read more if you want to get a more comprehensive view of RL

• the other opportunity to learn what’s not covered in lectures is the project, as potential topics for projects are much broader than what’s covered in class.
My goals

• Encourage you to do research in this area
• Introduce useful mathematical tools to you
• Refresh my memory on some topics and organize them into clean notes
• Learn from you
Logistics

- Course website: http://nanjiang.cs.illinois.edu/cs598/
 - logistics, links to slides/notes (uploaded after lectures), and resources (e.g., textbooks to consult, related courses), deadline & announcements
- Time & Location: Tue & Thu 2-3:15pm, 1302 Siebel.
- Office hours: By appointment. 3322 Siebel.
 - Questions about material: ad hoc meetings after lectures subject to my availability
 - Other things about the class (e.g., project): by appointment
Introduction to MDPs and RL
Reinforcement Learning (RL)
Applications

[Levine et al’16] [Ng et al’03] [Singh et al’02] [Lei et al’12]
[Mandel et al’16] [Tesauro et al’07] [Mnih et al’15] [Silver et al’16]
Greedy is suboptimal due to delayed effects

Need long-term planning
Greedy is suboptimal due to delayed effects

Need **long-term planning**
Stochastic Shortest Path

Markov Decision Process (MDP)

Transition distribution
Bellman Equation

$$V^*(c) = \min \{ 4 + 0.7 \times V^*(d) + 0.3 \times V^*(e), 2 + V^*(e) \}$$

Greedy is suboptimal due to delayed effects

Need long-term planning
Stochastic Shortest Path

Bellman Equation
\[V^*(c) = \min\{4 + 0.7 \times V^*(d) + 0.3 \times V^*(e), 2 + V^*(e)\} \]

Greedy is suboptimal due to delayed effects

Need long-term planning
Stochastic Shortest Path via trial-and-error
Stochastic Shortest Path via trial-and-error

Trajectory 1: $s_0 \Downarrow c \Uparrow d \rightarrow g$
Stochastic Shortest Path via trial-and-error

Trajectory 1: $s_0 \searrow c \nearrow d \rightarrow g$

Trajectory 2: $s_0 \searrow c \nearrow e \rightarrow f \nearrow g$

...
Stochastic Shortest Path via trial-and-error

Trajectory 1: $s_0 \rightarrow c \rightarrow d \rightarrow g$

Trajectory 2: $s_0 \rightarrow c \rightarrow e \rightarrow f \rightarrow g$

...
How many trajectories do we need to compute a near-optimal policy?

Sample complexity

Stochastic Shortest Path via trial-and-error

Model-based RL

Trajectory 1: $s_0 \searrow c \nearrow d \rightarrow g$

Trajectory 2: $s_0 \searrow c \nearrow e \rightarrow f \nearrow g$

…
Stochastic Shortest Path via trial-and-error

How many trajectories do we need to compute a near-optimal policy?

- Assume states & actions are visited uniformly
- \#trajectories needed \(\leq n \cdot (#\text{state-action pairs}) \)

\#samples needed to estimate a multinomial distribution
How many trajectories do we need to compute a near-optimal policy?

- Assume states & actions are visited uniformly
 - \#trajectories needed ≤ \(n \cdot (\#\text{state-action pairs}) \)

Nontrivial! Need exploration

\#samples needed to estimate a multinomial distribution
Video game playing

state $s_t \in S$

action $a_t \in A$

reward $r_t = R(s_t, a_t)$

transition dynamics $P(\cdot | s_t, a_t)$ (unknown)

e.g., random spawn of enemies

objective: maximize $\mathbb{E} \left[\sum_{t=1}^{H} r_t | \pi \right]$ (or $\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | \pi \right]$)

$\gamma = 0.8$

$\gamma = 0.9$
Need generalization

Value function approximation

Video game playing
Video game playing

state features x \rightarrow \theta \rightarrow f(x;\theta)

Need generalization
Value function approximation
Video game playing

Find θ s.t. $f(x;\theta) \approx r + \gamma \cdot E_{x'|x}[f(x';\theta)] \Rightarrow f(\cdot;\theta) \approx V^*$
Adaptive medical treatment

- State: diagnosis
- Action: treatment
- Reward: progress in recovery
A Machine Learning view of RL
Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

- Computer Science
- Economics
- Mathematics
- Engineering
- Neuroscience
- Psychology
- Machine Learning
- Classical/Operant Conditioning
- Optimal Control
- Operations Research
- Reinforcement Learning
- Reward System
- Bounded Rationality

slide credit: David Silver
Supervised Learning

Given \{ (x^{(i)}, y^{(i)}) \}, learn \(f : x \mapsto y \)

- Online version: for round \(t = 1, 2, \ldots \), the learner
 - observes \(x^{(t)} \)
 - predicts \(\hat{y}^{(t)} \)
 - receives \(y^{(t)} \)
- Want to maximize # of correct predictions
- e.g., classifies if an image is about a dog, a cat, a plane, etc. (multi-class classification)
- Dataset is fixed for everyone
- “Full information setting”
- Core challenge: generalization
Contextual bandits

For round $t = 1, 2, \ldots$, the learner

- Given x_i, chooses from a set of actions $a_i \in A$
- Receives reward $r(t) \sim R(x(t), a(t))$ (i.e., can be random)
- Want to maximize total reward
- You generate your own dataset $\{(x^{(t)}, a^{(t)}, r^{(t)})\}$
- e.g., for an image, the learner guesses a label, and is told whether correct or not (reward = 1 if correct and 0 otherwise). Do not know what’s the true label.
- e.g., for an user, the website recommends a movie, and observes whether the user likes it or not. Do not know what movies the user really want to see.
- “Partial information setting”
Contextual bandits

Contextual Bandits (cont.)

- Simplification: no x, Multi-Armed Bandits (MAB)
- Bandit is a research area by itself. we will not do a lot of bandits but may go through some material that have important implications on general RL (e.g., lower bounds)
For round $t = 1, 2, \ldots$,

- For time step $h=1, 2, \ldots, H$, the learner
 - Observes $x_h(t)$
 - Chooses $a_h(t)$
 - Receives $r_h(t) \sim R(x_h(t), a_h(t))$
 - Next $x_{h+1}(t)$ is generated as a function of $x_h(t)$ and $a_h(t)$ (or sometimes, all previous x’s and a’s within round t)
- Bandits + “Delayed rewards/consequences”
- The protocol here is for episodic RL (each t is an episode).
Why statistical RL?

Two types of scenarios in RL research

1. Solving a large *planning* problem using a *learning* approach
 - e.g., AlphaGo, video game playing, simulated robotics
 - Transition dynamics (Go rules) known, but too many states
 - Run the simulator to collect data

2. Solving a *learning* problem
 - e.g., adaptive medical treatment
 - Transition dynamics unknown (and too many states)
 - Interact with the environment to collect data
Why statistical RL?

Two types of scenarios in RL research

1. Solving a large planning problem using a learning approach
2. Solving a learning problem

- I am more interested in #2. More challenging in some aspects.
- Data (real-world interactions) is highest priority. Computation second.
- Even for #1, sample complexity lower-bounds computational complexity — statistical-first approach is reasonable.
 - caveat to this argument: you can do a lot more in a simulator; see http://hunch.net/?p=8825714
MDP Planning
Infinite-horizon discounted MDPs

An MDP $M = (S, A, P, R, \gamma)$

- State space S.
- Action space A.
- Transition function $P : S \times A \rightarrow \Delta(S)$. $\Delta(S)$ is the probability simplex over S, i.e., all non-negative vectors of length $|S|$ that sums up to 1.
- Reward function $R : S \times A \rightarrow \mathbb{R}$. (deterministic reward function)
- Discount factor $\gamma \in [0, 1)$
- The agent starts in some state s_1, takes action a_1, receives reward $r_2 \sim R(s_1, a_1)$, transitions to $s_2 \sim P(s_1, a_1)$, takes action a_2, so on so forth — the process continues indefinitely.

We will only consider discrete and finite spaces in this course.
Value and policy

- Want to take actions in a way that maximizes value (or return):
 \[\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right] \]
- This value depends on where you start and how you act
- Often assume boundedness of rewards: \(r_t \in [0, R_{\text{max}}] \)
 - What’s the range of \(\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right] \)? \(\left[0, \frac{R_{\text{max}}}{1 - \gamma} \right] \)
- A (deterministic) policy \(\pi: S \rightarrow A \) describes how the agent acts: at state \(s_t \), chooses action \(a_t = \pi(s_t) \).
- More generally, the agent may choose actions randomly (\(\pi: S \rightarrow \Delta(A) \)), or even depending the action choice on the time step \(t \) ("non-stationary policies")
- Define \(V^\pi(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s, \pi \right] \)
Bellman equation for policy evaluation

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s, \pi \right]
\]

\[
= \mathbb{E} \left[r_1 + \sum_{t=2}^{\infty} \gamma^{t-1} r_t \mid s_1 = s, \pi \right]
\]

\[
= R(s, \pi(s)) + \sum_{s' \in S} P(s' \mid s, \pi(s)) \mathbb{E} \left[\sum_{t=2}^{\infty} \gamma^{t-2} r_t \mid s_1 = s, s_2 = s', \pi \right]
\]

\[
= R(s, \pi(s)) + \sum_{s' \in S} P(s' \mid s, \pi(s)) \mathbb{E} \left[\gamma \sum_{t=2}^{\infty} \gamma^{t-2} r_t \mid s_2 = s', \pi \right]
\]

\[
= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s', \pi \right]
\]

\[
= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^\pi(s')
\]

\[
= R(s, \pi(s)) + \gamma \langle P(\cdot \mid s, \pi(s)), V^\pi(\cdot) \rangle
\]
Bellman equation for policy evaluation

\[V^\pi(s) = R(s, \pi(s)) + \gamma \langle P(\cdot | s, \pi(s)), V^\pi(\cdot) \rangle \]

Matrix form: define

- \(V^\pi \) as the \(|S| \times 1\) vector \([V^\pi(s)]_{s \in S}\)
- \(R^\pi \) as the vector \([R(s, \pi(s))]_{s \in S}\)
- \(P^\pi \) as the matrix \([P(s' | s, \pi(s))]_{s \in S, s' \in S}\)

\[
V^\pi = R^\pi + \gamma P^\pi V^\pi \\
(I - \gamma P^\pi) V^\pi = R^\pi \\
V^\pi = (I - \gamma P^\pi)^{-1} R^\pi
\]

This is always invertible. Proof?
State occupancy

\[(I - \gamma P^\pi)^{-1}\]

Each row (indexed by \(s\)) is the discounted state occupancy

\[d_s^\pi = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} \mathbbm{1}[s_t = s] \middle| s_1 = s, \pi \right]\]

- Each row is like a distribution vector—except that the entries sum up to \(1/(1-\gamma)\). Let \(\eta_s^\pi = (1 - \gamma) \ d_s^\pi\) denote the normalized vector.
- \(V^\pi(s)\) is the dot product between \(d_s^\pi\) and reward vector
- Can also be interpreted as the value function of indicator reward function
Optimality

• For infinite-horizon discounted MDPs, there always exists a stationary and deterministic policy that is optimal for all starting states simultaneously
 • Proof: Puterman’94, Thm 6.2.7 (reference due to Shipra Agrawal)

• Let π^* denote this optimal policy, and $V^* := V^{\pi^*}$

• Bellman Optimality Equation:

$$V^*(s) = \max_{a \in A} \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \left[V^*(s') \right] \right)$$

• If we know V^*, how to get π^*?

• Easier to work with Q-values: $Q^*(s, a)$, as $\pi^*(s) = \arg\max_{a \in A} Q^*(s, a)$

$$Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \left[\max_{a' \in A} Q^*(s', a') \right]$$
Ad Hoc Homework 1

• uploaded on course website
• help understand the relationships between alternative MDP formulations
• more like readings w/ questions to think about
• no need to submit
• will go through in class next week