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What'’s this course about?

A grad-level seminar course on theory of RL

with focus on sample complexity analyses

d

| about proofs, some perspectives, 0 implementation

N

o text book; material is created by myself (course notes)

Related monograph under development w/ Alekh Agarwal,
Sham Kakade, and Wen Sun

See course website for more material and references



Who should take this course?

This course will be a good fit for you it you either

* (A) have exposure to RL + comfortable with long
mathematical derivations + interested in understanding RL
from a purely theoretical perspective

* (B) have solid grasp in a related theory field (e.qg.,
theoretical computer science or learning theory) and are
comfortable with highly abstract description of concepts /
models / algorithms

For people not in (A) or (B): | also teach C5443 RL (Spring),
which focuses less on analyses & proofs and more on
algorithms & Intuitions



Prerequisites

* Maths
* Linear algebra, probability & statistics, basic calculus

e Markov chains

* Optional: stochastic processes, numerical analysis

* Useful: TCS background, empirical processes and
statistical learning theory, optimization, control, information
theory, game theory, online learning, etc. etc.

* Exposure to ML
* e.g., CS 446 Machine Learning

* Experience with RL



Coursework

* Some readings after/before class

 3~4 graded homeworks to help digest certain material.

* about 40% of final grades (rest is project)

* (Course project (work on your own)

Baseline: reproduce theoretical

analysis in existing papers

Advanced: identify an interesting/challenging extension to

the paper and explore the nove

Or, just work on a novel researc

research question yourselt

N question (must have a

significant theoretical component; need to discuss with me)



Course project (cont.)

* See list of references and potential topics on website
* o be updated this semester
* You will need to submit:
* A brief proposal (~1/2 page). Tentative deadline: end of Oct
* what's the topic and what papers you plan to work on
* why you choose the topic: what interest you"”

* which aspect(s) you will focus on”

* Final report: clarity, precision, and brevity are greatly valued.
More details to come...

* All docs should be in pdf. Final report should be prepared
using LaTeX.



Contents of the course

 many important topics in RL will not be covered in depth (e.g.,
TD). Read more (e.g., Sutton & Barto book) if you want to get a
more comprehensive view of RL

* the other opportunity to learn what's not covered in lectures is
the project, as potential topics for projects are much broader
than what's covered in class.




Logistics

Course website: http://nanjiang.cs.illinois.edu/cs542/

* |ogistics, links to slides/notes, and resources (e.g.,
textbooks to consult, related courses)

Canvas for Q&A and announcements: see link on website.
* Please pay attention to Canvas announcements

* Auditing students: please contact TA to be added to
Canvas

Recording: published on MediaSpace (link on website)
Time: Wed & Fri 2-3:15pm.

'A: Philip Amortila (philipa4), Yuheng Zhang (yuhengz?2)
Office hours: after lecture (TA ad hoc OH TBA)



http://nanjiang.cs.illinois.edu/cs542/

Introduction to MDPs and RL
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Reinforcement Learning (RL)
Applications

°:'\:' Google DeepMind
Challenge Match

[Levine et al’16] [Ngetal’03] [Singh et al’02] [Leietal’12]

[Mandel et al’16]

[Tesauro et al’07] [Mnih et al’15][Silver et al’16]
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Shortest Path

V*(b)=15 Vi(d) =2 Vi(g)=0
S > 3 o g
V(S state L
!
p /
action
2 ] V*(f) =1
C e
2
Vic)=4 Vi) =2

Bellman Equation V*(d)=min{3 + V*(2), 1 + V*(f)}

Greedy is suboptimal due to delayed effects
Need long-term planning




12

Shortest Path
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Stochastic Shortest Path

Markov Decision Process (MDP)

-'\0.3 “\0'5 0
‘ .05 4
> 1 -
transition

distribution




Stochastic Shortest Path

Vi(b) =6

Vi(c)=4.5 V*(e)=2.5

optimal policy n*
Bellman Equation S ' (s)
V*(c)=min{4 + 0.7 x V*(d) + 0.3 x V*(e), 2 + V*(e)} s, \,
b —>

Greedy is suboptimal due to delayed. effetts.....
Need long-term planning
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Stochastic Shortest Path

Vi(d) =2 Vig) =0

Bellman Equation
V*(c)=min{4 + 0.7 x V*(d) + 0.3 x V*(e) , 2 + V*(e)}

Greedy is suboptimal due to delayed effects
Need long-term planning
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Stochastic Shortest Path
via trial-and-error
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Stochastic Shortest Path
via trial-and-error

Trajectory 1:sy~c " d—g

Trajectory 2:
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Stochastic Shortest Path
via trial-and-error

Model-based RL

Trajectory 1: 5y

Trajectory 2: s,

c,/ d
c,/ e

— g
—f/ g

How many trajectories do we need
to compute a near-optimal policy?

sample complexity
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Stochastic Shortest Path
via trial-and-error

How many trajectories do we need

Nontrivial! Need exploration to compute a near-optimal policy”

* Assume states & actions are visited uniformly
» #trajectories needed < n - (#state-action pairs)

N

#samples needed to estimate
a multinomial distribution
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Video game playing

reward ¥, = R (s, , a,)

state +20 e R
*
S; €5 e.g., random
+ SOC spawn of enemies
policy transition dynamics
TS — A action atEA P( . | s, at)

objective: maximize E [Zil re | )

(unknown)
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Video game playing

Need generalization

Value function approximation
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state features :{>
X

Find 6 s.t.

Video game playing

Need generalization

T — —

Value function approximation

fC;0)=V
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Adaptive medical treatment

value

e State: diagnosis
* Action: treatment
* Reward: progress in recovery

state features x



A Machine Learning view of RL



25

Engineering

Mathematics

Computer Science

Economics

Neuroscience

Psychology

slide credit: David Silver
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Supervised Learning

Given {(x®, yD)}, learn f: x » y

e Online version: forround t =1, 2,..., the learner
* Observes x®
« predicts
* receives y)

* Want to maximize # of correct predictions

* e©.Q., classifies if an image is about a dog, a cat, a plane, etc.
(multi-class classification)

 Dataset is fixed for everyone
* “Full information setting”
* Core challenge: generalization
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Contextual bandits

Forround t=1, 2,..., the learner

Given x®  chooses from a set of actions at) € A

Receives reward r® ~ R(x®, a®) (i.e., can be random)
Want to maximize total reward
You generate your own dataset {(x®, a®, y®)}!

e.qg., for an image, the learner guesses a label, and is told
whether correct or not (reward = 1 if correct and O otherwise).
Do not know what'’s the true label.

e.g., for an user, the website recommends a movie, and
observes whether the user likes it or not. Do not know what
movies the user really want to see.

“Partial information setting”
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Contextual bandits

Contextual Bandits (cont.)
* Simplification: no x, Multi-Armed Bandits (MAB)

* Bandit is a research area by itself. we will not do a lot of bandits
but may go through some material that have important
implications on general RL (e.qg., lower bounds)
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RL

Forround t=1, 2,...,

* Fortime step h=1, 2, ..., H, the learner

* QObserves xp) <«
* Chooses a;")
* Receives ry®) ~ R(xx®, an®)

* Next xn+1® is generated as a function of x;® and a;(t)
(or sometimes, all previous x’s and a’s within round t)

 Bandits + “Delayed rewards/consequences”

* The protocol here is for episodic RL (each t is an episode).
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Why statistical RL?

Two types of scenarios in RL research

1. Solving a large planning problem using a learning approach
- e.9., AlphaGo, video game playing, simulated robotics
- Transition dynamics (Go rules) known, but too many states
- Run the simulator to collect data

2. Solving a learning problem
- €.Q., adaptive medical treatment
- Transition dynamics unknown (and too many states)
- Interact with the environment to collect data
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Why statistical RL?

Two types of scenarios in RL research

1. Solving a large planning problem using a learning approach

2. Solving a learning problem

* #2is less studied & many challenges. Data (real-world
interactions) is highest priority. Computation second.

* Even for #1, sample complexity lower bounds computational
complexity, so sample efficiency is also important.



MDP Planning
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Infinite-horizon discounted MDPs

AnMDP M =(S, A, B R, v)

State space S. We will only consider discrete and

Action space A. finite spaces in this course.

Transition function P : SxA—A(S). A(S) is the probability simplex
over S, i.e., all non-negative vectors of length |S| that sums up to 1

Reward function R: SxA—R. (deterministic reward function)
Discount factor y € [0,1)

The agent starts in some state s, takes action a1, receives reward
r1 ~ R(s1, m), transitions to s» ~ P(s1, a1), takes action a2, SO on so
forth — the process continues indefinitely
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Value and policy

Want to take actions in a way that maximizes value (or return):

- [221 yt—lrt]

* This value depends on where you start and how you act

Often assume boundedness of rewards: r, € [0, R
 What's the range of E [folf_ln] ? lo, Rinax

= 1 -7
A (deterministic) policy m: S—A describes how the agent acts: at

state s;, chooses action a; = m(sy).

max]

More generally, the agent may choose actions randomly (mt: S—

A(A)), or even in a way that varies across time steps (“non-
stationary policies”)

Define Vi(s) =E [221 y=lr,

Sl =S,7Z':|
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Vi(s)=E nyt_lfrt 51 =8,
t=1 i

Bellman equation for policy evaluation

®.@
_ t—1
=K 7“1—|—E YTy }Slzs,ﬂ
t=2

= R(s,m(s)) + Z P(s'|s,m(s)) E

s’eS

= R(s,m(s)) + Z P(s'|s,m(s)) E

s’eS

[ 00

t—2
’YE Ro A ‘81
| t=2

[ o0

t—2
75 T ‘82
L =2

= R(s,m(s)) + 7 Z P(s'|s,m(s))E ivt_lrt 51

s’'eS

= R(s,m(s)) +7 ) _ P(s/|s,m(5)) V(s)

s’eS

— R(S,?T(S)) +7<P("377T(3))7 Vﬂ(')>
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Bellman equation for policy evaluation

VZ(s) = R(s, n(s)) + y(P( - | s, 7(s)), V(- ))
Matrix form: define
* V™ as the |S|x1 vector [V™(s)]ses

* R™as the vector [R(s, 71(5))]ses

* P™ as the matrix [P(s’|s, 11(s))]ses, s'es
V= R"+yP"V"
(I —yP")V" = R"

VT = (I . }/PJZ')—IRJZ'

This is always invertible. Proof?
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Generalize to stochastic policies

 fm: S — A(A)

V7i(s) =

o Matrix form

a9 [R(s,@)] +y > (s'|s,a) VT (s')

acA,s’'eS

La~(+]s),s' ~P(+|s,a) R(s,a)+ VVW(S/)]

V% = R" 4+ yP"V” still holds with

R™(s) = Eqn(s) [ (s, a)] Shorthand: R(s, )

— Z m(a|s)P(s'|s,a) Shorthand: P(s" | s, 1)

e Convention:

“(s)” after T dropped & integration over action implicit
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Homework O

uploaded on course website

help understand the relationships between alternative MDP
formulations

more like readings w/ questions to think about

No need to submit



39

State occupancy

1=y -U—-yP?™

Each row (indexed by s) is the normalized discounted state
occupancy d™°, whose (s’)-th entry is

(s =(1=p) - T2 y-ldr

where d™(s") = P*[s, = s’

s1=5]

S| =S, 7 ] =2~ 7 Y P, = 5| sy = sIR(s, m)

. Vi)=Y r'E ["r
» Also:(I—yPH™ =X~ y='(P7!, and (PH)!(s'|s) = P7[s, = 5'| 5, = 5]
* (1-y)is the normalization factor so that matrix is row-stochastic.

* Can also be interpreted as the value function of indicator reward
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Optimality

For infinite-horizon discounted MDPs, there always exists a
stationary and deterministic policy that is optimal for all starting
states simultaneously

e Proof: Puterman’94, Thm 6.2.7 (reference due to Shipra Agrawal)
Let 7* denote this optimal policy, and V™ := V™

Bellman Optimality Equation:

V*(s) = max (R(s, a) + vEy pia | V() )

aceA

N

f we know V7, how to get * ?

Easier to work with Q-values: Q*(s, a), as #*(s) = arg max Q*(s, a)
aceA

Q*(S, CZ) = R(S, Cl) + }/[ES/NP(S,a) n,léli( Q*(S’, Cl’)
da




