State Abstractions

Notations and Setup

- $\operatorname{MDP} M=(S, A, P, R, \gamma)$

- Are the aggregated states really equivalent?

$$
\begin{aligned}
& \text { lent? } \quad(x, y, z, u) \\
& (x, y, z, w) \stackrel{\phi}{S_{\|}}(x, y)
\end{aligned}
$$

- Q* values?
- dynamics and rewards?

Outline of the lecture

1. Define various notions/criteria of abstractions
2. Study their relationships
3. Analyze how to use them (e.g., building an abstract model) in planning and learning

- Abstract model will also appear in $1 \& 2$

Abstraction hierarchy

An abstraction ϕ is \ldots if $\ldots \forall s^{(1)}, s^{(2)}$ where $\phi\left(s^{(1)}\right)=\phi\left(s^{(2)}\right)$

- π^{*}-irrelevant: $\exists \pi_{M}{ }^{*}$ s.t. $\pi_{M}{ }^{*}\left(s^{(1)}\right)=\pi_{M}{ }^{*}\left(s^{(2)}\right)$

- Q^{*}-irrelevant: $\forall a, Q_{M}{ }^{*}\left(s^{(1)}, a\right)=Q_{M}{ }^{*}\left(s^{(2)}, a\right)$
- Model-irrelevant: $\forall a \in A$, (bisimulation)

$$
\begin{aligned}
& R\left(s^{(1)}, a\right)=R\left(s^{(2)}, a\right)=P\left(s^{\prime} \mid s^{(2},\right. \\
& \frac{\left.x^{\prime} \mid s^{(1)}, a\right)}{\Delta}=P\left(x^{\prime} \mid s^{(2)}, a\right)
\end{aligned}
$$

$$
\sum_{s^{\prime} \in \phi^{-1}\left(x^{\prime}\right)} \mathrm{P}\left(\mathrm{~s}^{\prime} \mid \mathrm{s}^{(1)}, \mathrm{a}\right)
$$

Theorem: Model-irrelevance $\Rightarrow Q^{*}$-irrelevance $\Rightarrow \pi^{*}$-irrelevance

Abstraction induces an equivalence relation

- Reflexivity, symmetry, transitivity
- Equivalence notion is a canonical representation of abstraction (i.e., what symbol you associate with each abstract state doesn't matter; what matters is which states are aggregated together)
- Partition the state space into equivalence classes
- Coarsest bisimulation is unique (see proof in notes)
- sketch: if ϕ_{1} and ϕ_{2} are both bisimulations, their common coarsening is also a bisimulation (two states are aggregated if they are aggregated under either ϕ_{1} or ϕ_{2})

$$
1,23 \quad 1,2,3
$$

The abstract MDP implied by bisimulation

ϕ is bisimulation: $R\left(s^{(1)}, a\right)=R\left(s^{(2)}, a\right), P\left(x^{\prime} \mid s^{(1)}, a\right)=P\left(x^{\prime} \mid s^{(2)}, a\right)$

- ADP $M_{\phi}=\left(S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma\right)$
- For any $x \in S_{\phi,}, a \in A, x^{\prime} \in S_{\phi}$
$\left(s, a, r, s^{r}\right)$.
- $R_{\phi}(x, a)=R(s, a)$ for any $s \in \phi^{-1}(x)$
- $P_{\phi}\left(x^{\prime} \mid x, a\right)=P\left(x^{\prime} \mid s, a\right)$ for any $s \in \phi^{-1}(x)$
$\left(\phi(s), a, v, \phi\left(s^{\prime}\right)\right)$.
- No way to distinguish between the two routes: $S^{(1)} h x^{\prime \prime} l_{0} \leftharpoondown$

Implications of bisimulation

- Q^{*} is preserved

- $Q_{M}{ }^{\pi}$ is preserved for any π lifted from an abstract policy
- the policy must take the same actign(distribution) across aggregated states

Extension to handle action aggregation

Figure from: Ravindran \& Barto. Approximate Homomorphisms: A framework for non-exact minimization in Markov Decision Processes. 2004.

Definition 3 (Approximate abstractions). Given $\operatorname{MDP} M=(\mathcal{S}, \mathcal{A}, P, R, \gamma)$ and state abstraction ϕ that operates on \mathcal{S}, define the following types of abstractions:

1. ϕ is an $\epsilon_{\pi^{*}}$-approximate π^{\star}-irrelevant abstraction, if there exists an abstract polic $\pi \mathcal{S}_{\phi} \rightarrow \mathcal{A}$, such that $\left\|V_{M}^{\star}-V_{M}^{[\pi]_{M}}\right\|_{\infty}=\epsilon_{\pi^{*}}$. ,
2. ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction if there exists an abstract Q-value function $f: \mathcal{S}_{\phi} \times \mathcal{A} \rightarrow \mathbb{R}$, such that $\left\|[f]_{M}-Q_{M}^{\star}\right\|_{\infty} \epsilon_{Q^{\star}}$
3. ϕ is an $\left(\epsilon_{R}, \epsilon_{P}\right)$-approximate model-irrelevant abstraction if for any $s^{(1)}$ and $s^{(2)}$ where $\phi\left(s^{(1)}\right)=$ $\phi\left(s^{(2)}\right), \forall a \in \mathcal{A}$,
$P\left(X^{\prime} \mid b^{(c)}, a\right)$

$$
\begin{equation*}
\left|R\left(s^{(1)}, a\right)-R\left(s^{(2)}, a\right)\right| \leq \epsilon_{R}, \quad\left\|\Phi P\left(s^{(1)}, a\right)-\Phi P\left(s^{(2)}, a\right)\right\|_{1} \leq \epsilon_{P} . \tag{3}
\end{equation*}
$$

Useful notation: Φ is a $\left|\mathcal{S}_{\phi}\right| \times|\mathcal{S}|$ matrix, with

$$
\Phi(\mathrm{x}, \mathrm{~s})=\square[\phi(\mathrm{s})=\mathrm{x}]
$$

- lifting a state-value function: $\left[\mathrm{V}_{\mathrm{M}_{\phi}}^{\star}\right]_{\mathrm{M}}=\Phi^{\top} \mathrm{V}_{\mathrm{M}_{\phi}}^{\star} \longleftarrow$
- collapsing the transition distribution: $\Phi P(s, a)$

$$
\Phi=\left[\begin{array}{llllllll}
1 & 1 & 1 & & & & & \\
& & 1 & 1 & 1 & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & 1
\end{array}\right]
$$

(1) $p \in \Delta(S) \subseteq \mathbb{R}^{|S|}$.

$$
\begin{aligned}
& D \in \Delta(S) \subseteq \mathbb{R}^{(1)} \\
& \bar{\Phi} \times P=\left[\begin{array}{llll}
111 & & & \\
& 1,1 & & \\
& & & \ddots \\
\\
& & (1)]
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
p \\
1
\end{array}\right]
\end{aligned}
$$

$$
\Phi P\left(\cdot \mid s^{(1)}, a\right)=\Phi P\left(\cdot \mid s^{(2)}, a\right) \text {. }
$$

(2) f: $S_{\phi} \rightarrow \mathbb{R} . \bar{\Phi}^{\top} f$.

Theorem 2. (1) If ϕ is an $\left(\epsilon_{R}, \epsilon_{P}\right)$-approximate model-irreleount abstraction, then ϕ is also an approximate Q^{\star}-irrelevant abstraction with approximation error $\left.\epsilon_{Q^{\star}}=\frac{\epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon_{P} R_{\max }}{2(1-2)^{\star}}\right)$.
(2) If ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction, then ϕ is uso an approximate π^{\star}-irrelevant abstraction with approximation error $\epsilon_{\pi^{\star}}=2 \epsilon_{Q^{\star}} /(1-\gamma)$.

- (2) follows directly from a known result; can you see?
- Construct the f in the definition of approx. Q^{*}-irrelevance: ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction if there exists an abstract Q-value function $f: \mathcal{S}_{\phi} \times \mathcal{A} \rightarrow \mathbb{R}$, such that $\left\|[f]_{M}-Q_{M}^{\star}\right\|_{\infty} \leq \epsilon_{Q^{\star}}$.
- Define $M_{\phi}=\left(S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma\right)$ w/ any weighting distributions $\left\{p_{x}: x \in S_{\phi}\right\}$, where each p_{x} is supported on $\phi^{-1}(x)$

$$
\begin{gathered}
R_{\phi}(x, a)=\sum_{s \in \phi^{-1}(x)} p_{x}(s) R(s, a), \quad P_{\phi}(x, a)=\sum_{s \in \phi^{-1}(x)} p_{x}(s) \Phi P(s, a) . \\
\bullet\left|R_{\phi}(\phi(s), a)-R(s, a)\right| \leq \varepsilon_{R}, \quad| | P_{\phi}(\phi(s), a)-\Phi P(s, a) \| \leq \varepsilon_{P} .
\end{gathered}
$$

- Set $f:=\mathrm{Q}_{M_{\phi}}^{\star}$, bound $\left\|[\mathrm{f}]_{M}-\mathrm{Q}_{M}^{\star}\right\|_{\infty}$

$$
\begin{aligned}
& \left\|\left[\left[Q_{M q}^{*}\right]_{M}\right]^{r}-Q_{M}^{*}\right\|_{\infty} L=\left\|g-Q_{g}\right\|_{\infty}-T g-T Q^{*} \|_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1-\gamma} \|[\underbrace{\left.T_{M_{\phi}} Q_{M_{\phi}}^{*}\right]_{M}-\tau_{M}\left[Q_{\mu_{\phi}}^{*}\right]_{\mu} \|_{o_{0,}} .} \\
& \forall(s, a) \text {. } \\
& \left|\left(J_{\mu \psi} Q_{\mu_{q}}^{*}\right)(\phi(s), q)-J_{\mu}\left(\theta_{n_{\phi}}^{*}\right]_{M}(s, q)\right| \\
& =\int_{R_{\phi}(\phi(s), a)}^{\hat{R_{k}}\left(\gamma<P_{\phi}(\phi(s), a), V_{M \phi}^{*}\right\rangle} .
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varepsilon_{R}+\gamma_{k} \\
& s^{\prime} \rightarrow m_{a^{\prime}} Q\left(s^{\prime} \alpha^{\prime} a^{\prime}\right) \text {. }
\end{aligned}
$$

$$
\Phi P\left(s^{(1)}, a\right)=\Phi P\left(s^{(2)}, a\right) .
$$

Outline of the lecture

1. Define various notions/criteria of abstractions
2. Study their relationships

3. Analyze how to use them (e.g., building an abstract model) in planning and learning

- e.g., plan in M_{ϕ} to reduce computational cost
- If ϕ is not exact bisimulation, what's sub-optimality as a function of $\left(\varepsilon_{R}, \varepsilon_{P}\right)$? (Partially answered; will take a closer look)
- What if ϕ is only approximately Q^{*}-irrelevant? Is the abstract model still useful? Can we still bound loss as a function of $\varepsilon_{Q^{*}}$?
- Learning setting?

Loss of $\pi_{M_{\phi_{M}}}^{\star}$: approx. bisimulation

- Recall: M_{ϕ} defined using any weighting distributions $\left\{p_{x}\right\}$ satisfies $\left|R_{\phi}(\phi(s), a)-R(s, a)\right| \leq \varepsilon_{R}, \quad\left\|P_{\phi}(\phi(s), a)-\Phi P(s, a)\right\|_{1} \leq \varepsilon_{P}$.
- Apply earlier Theorem:

$$
\left\|V_{M}^{*}-\frac{\pi_{\pi}^{*} \mu_{0}, R}{M}\right\|_{\infty} \leq \frac{2 \epsilon_{R}}{(1-\gamma)^{2}}+\frac{\gamma \epsilon_{P} R_{\max }}{(1-\gamma)^{3}}
$$

- Can improve: $\left\|V_{M}^{*}-V_{M}^{\left[\pi_{\alpha_{\phi}}\right]_{M}}\right\|_{\infty} \leq \frac{2 \epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon R_{\max }}{(1-\gamma)^{2}} \leftharpoonup$
- Idea: for any $\pi: S_{\phi} \rightarrow A, \quad\left\|\left[V_{M_{\phi}}^{\pi}\right]_{M}-V_{M}^{[\pi]_{\mu}}\right\|_{\infty} \leq \frac{\epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon_{P} R_{\max }}{2(1-\gamma)^{2}}$
- Finally,

$$
\begin{aligned}
V_{M}^{\star}(s)-V_{M}^{\left[\pi_{M_{\phi}}^{\star}\right]_{M}}(s) & =V_{M}^{\star}(s)-V_{M_{\phi}}^{\star}(\phi(s))+V_{M_{\phi}}^{\star}(\phi(s))-V_{M}^{\left[\pi_{M_{\phi}}^{\star}\right]_{M}}(s) \\
& \leq\left\|Q_{M}^{\star}-\left[Q_{M_{\phi}}^{\star}\right]_{M}\right\|_{\infty}+\left\|\left[V_{M_{\phi}}^{\pi_{\Lambda_{\phi}}^{\star}}\right]_{M}-V_{M}^{\left[\pi_{M_{\phi}}^{\star}\right]_{M}}\right\|_{\infty}
\end{aligned}
$$

- Lesson: w/ approx. bisimulation, take the $\max _{\pi}\left\|V_{M}^{\pi}-V_{M}^{\pi}\right\|_{\infty}$ route instead of the $\left\|Q_{M}^{\star}-Q_{\bar{M}}^{\star}\right\|$ route to save dependence on horizon
$\left[\pi_{M}\right]_{\mu}$ can be bad. even if ϕ is π^{*}-irrelevard.

Loss of $\pi_{\mathrm{M}_{\phi \mathrm{M}}}^{\star}$: approx. Q^{\star}-irrelevance

- M_{ϕ} well defined, but transitions/rewards don't make sense
- Can still show: $\left\|\left[Q_{M_{\phi}}^{\star}\right]_{M}-Q_{M}^{\star}\right\|_{\infty} \leq 2 \epsilon_{Q^{\star}} /(1-\gamma)$
- Exact case $\left(\epsilon_{Q^{\star}}=0\right): \forall s^{(1)}, s^{(2)}$ where $\phi\left(s^{(1)}\right)=\phi\left(s^{(2)}\right)$ $R\left(s^{(1)}, a\right)+\gamma\left\langle P\left(s^{(1)}, a\right), V_{M}^{\star}\right\rangle=Q^{\star}\left(s^{(1)}, a\right)=Q^{\star}\left(s^{(2)}, a\right)=R\left(s^{(2)}, a\right)+\gamma\left\langle P\left(s^{(2)}, a\right), V_{M}^{\star}\right\rangle$

So:

$$
\begin{aligned}
\left(\mathcal{T}_{M_{\phi}}\left[Q_{M}^{\star}\right]_{\phi}\right)(x, a) & =R_{\phi}(x, a)+\gamma\left\langle P_{\phi}(x, a),\left[V_{M}^{\star}\right]_{\phi}\right\rangle \\
& =\sum_{s \in \phi^{-1}(x)} p_{x}(s)\left(R(s, a)+\gamma\left\langle\Phi P(s, a),\left[V_{M}^{\star}\right]_{\phi}\right)\right) \\
& =\sum_{s \in \phi^{-1}(x)} p_{x}(s)\left(R(s, a)+\gamma\left\langle P(s, a), V_{M}^{\star}\right)\right) \\
& =\sum_{s \in \phi^{-1}(x)} p_{x}(s)\left[Q_{M}^{\star}\right]_{\phi}(x, a)=\left[Q_{M}^{\star}\right]_{\phi}(x, a) .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[Q_{M_{\phi}}^{*}\right]_{M}=Q_{M}^{*} \text { fired poit of } T_{M} .} \\
& \Leftrightarrow Q_{M}^{*}(\text { compressed })=\left[Q_{M_{H}}\right]_{\underline{I}}
\end{aligned}
$$

is ficed point of TML.

$$
\begin{aligned}
& \left(T_{M_{q}}\left[\theta_{M}^{*}\right]_{\phi}\right)(x, a) \geqslant\left[Q_{M}^{*}\right]_{\phi}(x, a) \text {. } \\
& =\underline{R_{\phi}(x, c)}+\gamma\left\langle\underline{P_{\phi}(x, c)},\left[V_{M}^{*}\right]_{\phi}\right\rangle \\
& =\sum_{s \in \phi^{-}(x)} P_{x}(s)\left(R(s, a)+\gamma<\underline{\Phi} P(s, a),\left(V_{m}^{*}\right]_{\phi)}\right. \\
& =\underbrace{}_{\sum_{\epsilon_{f}^{\prime}(t)} p_{x}(s)(\underbrace{R(s, a)+\gamma\left\langle P(s, a), V_{\mu}^{*}>\right.}_{M_{\mu}^{*}(s, e) .})} \text {. }
\end{aligned}
$$

Loss of $\pi_{\mathrm{M}_{\phi \mathrm{M}}}^{\star}$: approx. Q^{\star}-irrelevance

- Approximate case: proof breaks as $Q_{M}{ }^{*}$ not piece-wise constant
- Workaround: define a new model $M_{\phi}{ }^{\prime}$ over S

$$
R_{\phi}^{\prime}(s, a)=\mathbb{E}_{\tilde{s} \sim p_{\phi(s)}}[R(\tilde{s}, a)], \quad P_{\phi}^{\prime}\left(s^{\prime} \mid s, a\right)=\mathbb{E}_{\tilde{s} \sim p_{\phi(s)}}\left[P\left(s^{\prime} \mid \tilde{s}, a\right)\right] .
$$

- Can show: M_{ϕ} and M_{ϕ} share the same Q^{*} (up to lifting)
- $\left\|\left[Q_{M_{\phi}}^{\star}\right]_{M}-Q_{M}^{\star}\right\|_{\infty}=\left\|Q_{M_{\phi}^{\prime}}^{\star}-Q_{M}^{\star}\right\|_{\infty} \leq \frac{1}{1-\gamma}\left\|\mathcal{T}_{M_{\phi}^{\prime}} Q_{M}^{\star}-Q_{M}^{\star}\right\|_{\infty}$

$$
\begin{aligned}
& \left|\left(\mathcal{T}_{M_{\phi}^{\prime}} Q_{M}^{\star}\right)(s, a)-Q_{M}^{\star}(s, a)\right| \\
= & \left|R_{\phi}^{\prime}(s, a)+\gamma\left\langle P_{\phi}^{\prime}(s, a), V_{M}^{\star}\right\rangle-Q_{M}^{\star}(s, a)\right| \\
= & \left|\left(\sum_{\tilde{s}: \phi(\tilde{s})=\phi(s)} p_{x}(\tilde{s})\left(R(\tilde{s}, a)+\gamma\left\langle P(\tilde{s}, a), V_{M}^{\star}\right\rangle\right)\right)-Q_{M}^{\star}(s, a)\right| \\
= & \left|\sum_{\tilde{s}: \phi(\tilde{s})=\phi(s)} p_{x}(\tilde{s})\left(Q_{M}^{\star}(\tilde{s}, a)-Q_{M}^{\star}(s, a)\right)\right| \leq\left|\sum_{\tilde{s}: \phi(\tilde{s})=\phi(s)} p_{x}(\tilde{s})\left(2 \epsilon_{Q^{\star}}\right)\right|=2 \epsilon_{Q^{\star}} .
\end{aligned}
$$

Loss of $\pi_{\mathrm{M}_{\phi \mathrm{M}}}^{\star}$: approx. Q^{\star}-irrelevance

- Lesson: with Q^{\star}-irrelevance, the $\max _{\pi}\left\|V_{M}^{\pi}-V_{\bar{M}}\right\|_{\infty}$ approach is not available; $\left\|Q_{M}^{\star}-Q_{\bar{M}}^{\star}\right\|$ is the only choice
- If ϕ does not respect transition/reward, our analysis does not have to either!

Recap

- Theorem 2. (1) If ϕ is an $\left(\epsilon_{R}, \epsilon_{P}\right)$-approximate model-irrelevant abstraction, then ϕ is also an approximate Q^{\star}-irrelevant abstraction with approximation error $\epsilon_{Q^{\star}}=\frac{\epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon_{P} R_{\max }}{2(1-\gamma)^{2}}$.
(2) If ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction, then ϕ is also an approximate π^{\star}-irrelevant abstraction with approximation error $\epsilon_{\pi^{\star}}=2 \epsilon_{Q^{\star}} /(1-\gamma)$.
- Given weighting distributions $\left\{p_{x}\right\}$, define $M_{\phi}=\left(S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma\right)$

$$
R_{\phi}(x, a)=\sum_{s \in \phi^{-1}(x)} p_{x}(s) R(s, a), \quad P_{\phi}(x, a)=\sum_{s \in \phi^{-1}(x)} p_{x}(s) \Phi P(s, a)
$$

- How lossy is it to plan in M_{ϕ} and lift back to M ?
- If approx. bisimulation, use " $\max _{\pi}\left\|V_{M}^{\pi}-V_{\bar{M}}^{\pi}\right\|_{\infty}$ " type analysis

$$
\left\|V_{M}^{\star}-V_{M}^{\left[\pi_{M_{\phi}}^{\star}\right]_{M}}\right\|_{\infty} \leq \frac{2 \epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon_{P} R_{\max }}{(1-\gamma)^{2}}
$$

- If approx. Q^{*}-irrelevance, use " $\left\|Q_{M}^{\star}-Q_{\bar{M}}^{\star}\right\|$ " type analysis

$$
\left\|V_{M}^{\star}-V_{M}^{\left[\pi_{M_{\phi}}^{\star}\right]_{M}}\right\|_{\infty} \leq \frac{2 \epsilon_{Q^{\star}}}{(1-\gamma)^{2}}
$$

Compare abstract model w/ bisimulation vs w/ Q*-irrelevance

Both guarantee optimality (exact case), but in different ways

- Consider value iteration (VI) in true model vs abstract model
- Bisimulation: every step of abstract VI resembles that step in true VI , throughout all iterations, b/c $\forall f: \phi(\mathcal{S}) \rightarrow \mathbb{R}, \mathcal{T}[f]_{M}=\left[\mathcal{T}_{M_{\phi}} f\right]_{M}$
- Q*-irrelevance: abstract VI initially behaves crazily. It only starts to resemble true VI when the function is close to $Q_{m}{ }^{*}$
- This is a circular argument

$$
\mathcal{T} Q_{M}^{\star}=\left[\mathcal{T}_{M_{\phi}}\left[Q_{M}^{\star}\right]_{\phi}\right]_{M}
$$

- Secret is stability-contraction of abstract Bellman update
- Abstract Bellman update is a special case of projected Bellman update, and in general stability is not guaranteed. In that case, "Q*-irrelevance" alone is not enough to guarantee optimality

The learning setting

- Given: $D=\left\{D_{s, a}\right\}_{(s, a) \in \mathcal{S} \times \mathcal{A}}$ and ϕ
- Algorithm: CE after processing data w/ ϕ
- Shouldn't assume $\left|D_{s, a}\right|$ is the same for all (s, a)
- ... as we want to handle $|D| \ll|S|$
- What should appear in the bound to describe sample size?

$$
n_{\phi}(D):=\min _{x \in \mathcal{S}_{\phi}, a \in \mathcal{A}}\left|D_{x, a}\right|, \quad \text { where } \quad D_{x, a}:=\bigcup_{s \in \phi^{-1}(x)} D_{s, a} .
$$

- At the mercy of data to be exploratory

The learning setting

- Analysis varies according to whether ϕ is (approx.) bisimulation or Q^{\star}-irrelevant and the style ($\max _{\pi}\left\|V_{M}^{\pi}-V_{M}^{\pi}\right\|_{\infty}$ Vs $\left\|Q_{M}^{\star}-Q_{\bar{K}}^{\star}\right\|$)
- Will show analysis of Q^{*}-irrelevance (can only use " $\left\|Q_{M}^{\star}-Q_{\bar{M}}^{\star}\right\|$ ")
- Let \widehat{M}_{ϕ} be the estimated model
- Let M_{ϕ} be an abstract model w/ weighting distributions $p_{x}(s) \propto\left|D_{s, a}\right|$
- M_{ϕ} is the "expected model" of \widehat{M}_{ϕ}

$$
\left\|Q_{M}^{\star}-\left[Q_{\bar{M}_{\phi}}^{\star}\right]_{M}\right\|_{\infty} \leq\|\underbrace{Q_{M}^{\star}-\left[Q_{M_{\phi}}^{\star}\right]_{M}}\|_{\infty}+\left\|\left[Q_{M_{\phi}}^{\star}\right]_{M}-\left[Q_{\bar{M}_{\phi}}^{\star}\right]_{M}\right\|_{\infty}
$$

Approximation error

- "Bias", informally
- Doesn't vanish with more data
- Smaller with a finer ϕ (not w/ bisimulation; we will see why...)

Estimation error

- "Variance", informally
- Goes to 0 w/ infinite data
- Smaller with a coarser ϕ

$$
\left\|Q_{M}^{\star}-\left[Q_{\widehat{M}_{\phi}}^{\star}\right]_{M}\right\|_{\infty} \leq\|\underbrace{\| Q_{M}^{\star}-\left[Q_{M_{\phi}}^{\star}\right]_{M}}_{\text {already handled }}\|_{\infty}+\|[\underbrace{\star}_{\text {to be analyzed }}
$$

- Reusing the analysis for $\left\|Q_{M}^{\star}-Q_{\bar{M}}^{\star}\right\|$
- Challenge: data is not generated from M_{ϕ}
- Leverage the fact that Hoeffding can be applied to r.v.'s with nonidentical distributions

$$
\begin{aligned}
&\left\|\left[Q_{M_{\phi}}^{\star}\right]_{M}-\left[Q_{\widehat{M}_{\phi}}^{\star}\right]_{M}\right\|_{\infty}=\left\|Q_{M_{\phi}}^{\star}-Q_{\widehat{M}_{\phi}}^{\star}\right\|_{\infty} \\
& \leq \frac{1}{1-\gamma}\left\|Q_{M_{\phi}}^{\star}-\mathcal{T}_{\widehat{M}_{\phi}}^{\star} Q_{M_{\phi}}^{\star}\right\|_{\infty}=\frac{1}{1-\gamma}\left\|\mathcal{T}_{\widehat{M}_{\phi}} Q_{M_{\phi}}^{\star}-\mathcal{T}_{M_{\phi}} Q_{M_{\phi}}^{\star}\right\|_{\infty} \\
&\left|\left(\mathcal{T}_{\widehat{M}_{\phi}} Q_{M_{\phi}}^{\star}\right)(x, a)-\left(\mathcal{T}_{M_{\phi}} Q_{M_{\phi}}^{\star}\right)(x, a)\right| \\
&=\left|\widehat{R}_{\phi}(x, a)+\gamma\left\langle\widehat{P}_{\phi}(x, a), V_{M_{\phi}}^{\star}\right\rangle-R_{\phi}(x, a)-\gamma\left\langle P_{\phi}(x, a), V_{M_{\phi}}^{\star}\right\rangle\right| \\
&=\left|\frac{1}{\left|D_{x, a}\right|} \sum_{s \in \phi^{-1}(x)} \sum_{\left(r, s^{\prime}\right) \in D_{s, a}}\left(r+\gamma V_{M_{\phi}}^{\star}\left(\phi\left(s^{\prime}\right)\right)-R(s, a)-\gamma\left\langle P(s, a),\left[V_{M_{\phi}}^{\star}\right]_{M}\right\rangle\right)\right|
\end{aligned}
$$

