
State Abstractions

 



• MDP M = (S, A, P, R, γ) 

• Abstraction φ : S →Sφ 

• Surjection — aggregate states and treat as equivalent 

• Are the aggregated states really equivalent?  

• Do they have the same… 

• optimal action? 

• Q* values? 

• dynamics and rewards?
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Notations and Setup



1. Define various notions/criteria of abstractions 

2. Study their relationships 

3. Analyze how to use them (e.g., building an abstract model) in 
planning and learning 

• Abstract model will also appear in 1 & 2
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Outline of the lecture



An abstraction φ is … if … ∀ s(1), s(2) where φ(s(1)) = φ(s(2)) 

• π*-irrelevant: ∃ πM* s.t. πM*(s(1)) = πM*(s(2))

• Q*-irrelevant: ∀ a , QM*(s(1), a) = QM*(s(2), a)

• Model-irrelevant: ∀ a ∈ A,                    R(s(1), a) = R(s(2), a) 
                               ∀ a ∈ A, x’ ∈ Sφ,    P(x’ | s(1), a) = P(x’ | s(2), a) 
 
 

Theorem: Model-irrelevance ⇒ Q*-irrelevance ⇒ π*-irrelevance
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Abstraction hierarchy

 ∑s′ ∈ϕ−1(x′ ) P(s′ |s(1), a)

(bisimulation)



 5

Why not P(s’ | s(1), a) = P(s’ | s(2), a) ?

x’

x

a

MDP M

z’

z

Markov chain C

P((x′ , z′ ) | (x, z), a) = PM(x′ |x, a) ⋅ PC(z′ |z)

(x, z(1)) and (x, z(2)) cannot 
be aggregated under the 

s’-based condition

integrated out by 
bisimulation
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Abstraction induces an equivalence relation

• Reflexivity, symmetry, transitivity 

• Equivalence notion is a canonical representation of abstraction 
(i.e., what symbol you associate with each abstract state doesn’t matter; what 
matters is which states are aggregated together) 

• Partition the state space into equivalence classes 

• Coarsest bisimulation is unique (see proof in notes) 

• sketch: if φ1 and φ2 are both bisimulations, their common 
coarsening is also a bisimulation (two states are aggregated if 
they are aggregated under either φ1 or φ2)
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The abstract MDP implied by bisimulation

φ is bisimulation: R(s(1), a) = R(s(2), a) ,  P(x’ | s(1), a) = P(x’ | s(2), a)

• MDP Mφ = (Sφ, A, Pφ, Rφ, γ)

• For any x ∈ Sφ, a ∈ A, x’ ∈ Sφ

• Rφ(x, a) = R(s, a) for any s ∈ φ-1(x)

• Pφ(x’|x, a) = P(x’|s, a) for any s ∈ φ-1(x)

• No way to distinguish between the two routes:

M

Mφ

{(s, a, r, s’)}
generate data 

generate data 
{(φ(s), a, r, φ(s’))}

compress 
w/ φ

compress 
w/ φ
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Implications of bisimulation

• Q* is preserved 

• QM
π is preserved for any π lifted from an abstract policy 

• the policy must take the same action (distribution) across 
aggregated states
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Extension to handle action aggregation

G

A

B S

W E

N

G

{A, B}

(a) (b)

Figure 1: (a) A symmetric gridworld problem. The goal state is G and there are four deterministic
actions. State-action pairs (A,E) and (B,N) are equivalent (see text). (b) A reduced model of the
gridworld in (a). The state-action pairs (A,E) and (B,N) in the original problem both correspond
to the pair ({A,B}, E) in the reduced problem.

literature [Hartmanis and Stearns, 1966]. Machine homomorphisms help establish precise correspon-
dences between automata that have similar behavior and identify states that can be aggregated to-
gether to derive “smaller” equivalent models. We extend the notion to MDPs by incorporating decision
making and stochasticity. But the power of our approach comes from employing a state-dependent
action recoding. This enables us to apply our results to a wider class of problems and extend existing
MDP abstraction frameworks in ways not possible earlier. Our approach to abstraction belongs to
the class of algorithms known as model minimization methods and can be viewed as an extension of
the MDP minimization framework proposed by Dean and Givan [Givan et al., 2003].

To illustrate the concept of minimization, consider the simple gridworld shown in Figure 1(a). The
goal state is labeled G. Taking action E in state A is equivalent to taking action N in state B, in the
sense that they go to equivalent states that are both one step closer to the goal. One can say that
the state-action pairs (A, E) and (B, N) are equivalent. One can exploit this notion of equivalence
to construct a smaller model of the gridworld (Figure 1(b)) that can be used to solve the original
problem.

While abstractions that lead to exact equivalences are very useful, they are often difficult to achieve.
To apply our approach to real-world problems we need to consider a variety of “relaxed” minimization
criteria. For example, in the gridworld in Figure 1 assume that the action E succeeds with probability
0.9 and the action N succeeds with probability 0.8. When actions fail, you stay in the same cell. We
could still consider (A,E) and (B,N) equivalent for minimization purposes.

In this article we explore a relaxation of our minimization framework to accommodate approximate
equivalence of state-action pairs. We use results from [Whitt, 1978] to bound the loss in performance
resulting from our approximations. Specifically, we introduce the concept of an approximate homomor-
phism which uses the average behavior of the aggregated states and is particularly useful in learning.
In [Ravindran and Barto, 2002] we introduced the concept of a bounded homomorphism based on
Bounded-parameter MDPs [Givan et al., 2000] and derived loose bounds on the loss of performance
resulting from the approximation. Approximate homomorphisms allow us to derive tighter bounds on
the loss and also more closely model approximations resulting from online behaviour of a learning or
planning agent as opposed to bounded homomorphisms.

Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for  
non-exact minimization in Markov Decision Processes. 2004.
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Useful notation: Φ is a   matrix, with 
                           

• lifting a state-value function:   

• collapsing the transition distribution: Φ P(s, a)

|#ϕ | × |# |
Φ(x, s) = $[ϕ(s) = x]

[V⋆
Mϕ

]M = Φ⊤V⋆
Mϕ
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• (2) follows directly from a known result; can you see? 

• Construct the f  in the definition of approx. Q*-irrelevance: 
 

• Define Mφ = (Sφ, A, Pφ, Rφ, γ) w/ any weighting distributions  
{px: x ∈ Sφ}, where each px is supported on φ-1(x)

Rφ(x, a) =  Σs∈φ-1(x)  px(s) R(s, a),   Pφ(x, a) =  Σs∈φ-1(x)  px(s) Φ P(s, a). 

• |Rφ(φ(s), a) - R(s, a)| ≤ εR,   |Pφ(φ(s), a) - Φ P(s, a)| ≤ εP.  

• Set  f :=        ,  bound 

2 Approximate abstractions

In practice, exact abstractions are hard to find and verify, so we want our theory to handle approxi-
mate abstractions.

Definition 2 (lifting). For any function f that operates on �(S), let [f ]M denote its lifted version,
which is a function over S , defined as [f ]M (s) := f(�(s)). Similarly we can also lift a state-action
value function. Lifting a real-valued function f over states can also be expressed in vector form:
[f ]M = �>f .

Definition 3 (Approximate abstractions). Given MDP M = (S,A, P,R, �) and state abstraction � that
operates on S , define the following types of abstractions:

1. � is an ✏⇡? -approximate ⇡?-irrelevant abstraction, if there exists an abstract policy ⇡ : �(S) ! A,
such that kV ?

M � V [⇡]M
M k1  ✏⇡? .

2. � is an ✏Q? -approximate Q?-irrelevant abstraction if there exists an abstract Q-value function
f : �(S)⇥A ! R, such that k[f ]M �Q?

Mk1  ✏Q? .

3. � is an (✏R, ✏P )-approximate model-irrelevant abstraction if for any s(1) and s(2) where �(s(1)) =

�(s(2)), 8a 2 A,

|R(s(1), a)�R(s(2), a)|  ✏R,
����P (s(1), a)� �P (s(2), a)

���
1
 ✏P . (3)

Note that Definition 1 is recovered when all approximation errors are set to 0.
The following theorem characterizes the relationship between the 3 types of approximate abstrac-

tions, with Theorem 1 as a direct corollary.

Theorem 2. (1) If � is an (✏R, ✏P )-approximate model-irrelevant abstraction, then � is also an approximate

Q?
-irrelevant abstraction with approximation error ✏Q? = ✏R

1�� + �✏PRmax

2(1��)2 .

(2) If � is an ✏Q? -approximate Q?
-irrelevant abstraction, then � is also an approximate ⇡?

-irrelevant abstraction

with approximation error ✏⇡? = 2✏Q?/(1� �).

A useful lemma for proving Theorem 2:

Lemma 3. Let � be an (✏R, ✏P )-approximate model-irrelevant abstraction of M . Given any distributions

{px : x 2 �(S)} where each px is supported on ��1(s), define M� = (�(S),A, P�, R�, �), where R�(x, a) =

Es⇠px [R(s, a)], and P�(x0|x, a) = Es⇠px [P (x0|s, a)]. Then for any s 2 S, a 2 A,

|R�(�(s), a)�R(s, a)|  ✏R, kP�(x, a)� �P (s, a)k1  ✏P .

Proof. We only prove for the transition part; the reward part follows from a similar (and easier) ar-
gument. Consider any fixed x and a. Let qs := [P (x0|s, a)]x02�(S). By the definition of approximate
bisimulation we have kqs(1) �qs(2)k1  ✏P for any �(s(1)) = �(s(1)). The LHS of the claim on transition

5Q⋆
Mϕ

∥[f ]M − Q⋆
M∥∞







1. Define various notions/criteria of abstractions 

2. Study their relationships 

3. Analyze how to use them (e.g., building an abstract model) in 
planning and learning 

• e.g., plan in Mφ to reduce computational cost 

• If φ is not exact bisimulation, what’s sub-optimality as a 
function of (εR, εP) ? (Partially answered; will take a closer look) 

• What if φ is only approximately Q*-irrelevant? Is the abstract 
model still useful? Can we still bound loss as a function of εQ*? 

• Learning setting?
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Outline of the lecture
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Loss of          :  approx. bisimulationπ⋆
MϕM

• Recall: Mφ  defined using any weighting distributions {px} satisfies 
|Rφ(φ(s), a) - R(s, a)| ≤ εR,   ||Pφ(φ(s), a) - Φ P(s, a)||1 ≤ εP. 

• Apply earlier Theorem:  

• Can improve:  

• Idea: for any π : Sφ → A,  

• Finally, 
 
 
 

• Lesson: w/ approx. bisimulation, take the                           route 
instead of the                route to save dependence on horizon

function is (let x := �(s))
X

x02�(S)

kP�(x, a)� �P (s, a)k1

=
���

X

s̃2��1(x)

px(s̃)qs̃ � qs
���
1
=

���
X

s̃2��1(x)

px(s̃)(qs̃ � qs)
���
1


X

s̃2��1(x)

���px(s̃)(qs̃ � qs)
���
1


X

s̃2��1(x)

px(s̃)✏P = ✏P .

Proof of Theorem 2. Claim (2) follows directly from Lemma 4 in our first note, by using ⇡[f ]M as the
approximately optimal policy. It remains to prove Claim (1).

Define M� to be an abstract model as in Lemma 3 w.r.t. arbitrary distributions {px}. We will use
Q?

M�
as the f function in the definition of approximate Q?-irrelevance, and upper bound k[Q?

M�
]M �

Q?
Mk1 as:

���[Q?
M�

]M �Q?
M

���
1

 1

1� �

���[Q?
M�

]M � T [Q?
M�

]M
���
1

=
1

1� �

���[TM�Q
?
M�

]M � T [Q?
M�

]M
���
1

.

For any (s, a),

|([TM�Q
?
M�

]M )(s, a)� (T [Q?
M�

]M )(s, a)|

= |(TM�Q
?
M�

)(�(s), a)� (T [Q?
M�

]M )(s, a)|

= |R�(�(s), a) + �hP�(�(s), a), V
?
M�

i �R(s, a)� �hP (s, a), [V ?
M�

]M i|

 ✏R + �
���hP�(�(s), a), V

?
M�

i � hP (s, a),�>V ?
M�

i
���

= ✏R + �
���hP�(�(s), a), V

?
M�

i � h�P (s, a), V ?
M�

i
��� (*)

 ✏R + �✏P kV ?
M�

� Rmax
2(1��)1k1

 ✏R + �✏PRmax/(2(1� �)).

In step (*), we notice that [V ?
M�

]M is piece-wise constant, so when we take its dot-product with P (s, a),
we essentially first collapse P (s, a) onto �(S) (which is done by the � operator) and then take its dot-
product with V ?

M�
. The rest of the proof is similar to that of the simulation lemma.

3 Bounding the loss of abstract models

The previous sections define different notions abstractions and their relationships. But what happens
when we actually build a model using any type of abstractions and plan using the model? Is the
output policy near-optimal? For this section we focus on approximation errors only, and will discuss
estimation errors, that is, finite sample effects, in the next section.

3.1 � is an approximate bisimulation

If we are given an (✏R, ✏P )-approximate bisimulation abstraction and construct an abstract model M�

as in Lemma 3, how lossy is ⇡?
M�

? By applying both claims in Theorem 2 we obtain 2✏R
(1��)2 + �✏PRmax

(1��)3 ,
which turns out to be loose. Here we provide a tighter analysis.
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Theorem 4. Let � be an (✏R, ✏P )-approximate model-irrelevant abstraction of M , and M� be an abstract model

defined as in Lemma 3 with arbitrary distributions {px}, then

����V
?
M � V

[⇡?
M�

]M

M

����
1

 2✏R
1� �

+
�✏PRmax

(1� �)2
.

Proof. We first prove that for any abstract policy ⇡ : �(S) ! A,
���[V ⇡

M�
]M � V [⇡]M

M

���
1

 ✏R
1� �

+
�✏PRmax

2(1� �)2
. (4)

To prove this, first recall the contraction property of policy-specific Bellman update operator for state-
value functions, which implies that
���[V ⇡

M�
]M � V [⇡]M

M

���
1

 1

1� �

���[V ⇡
M�

]M � T [⇡]M [V ⇡
M�

]M
���
1

=
1

1� �

���[T ⇡
M�

V ⇡
M�

]M � T [⇡]M [V ⇡
M�

]M
���
1

.

For notation simplicity let R⇡0
(s) := R(s,⇡0(s)) and P⇡0

(s) := P (s,⇡0(s)). For any s 2 S ,

|[T ⇡
M�

V ⇡
M�

]M (s)� T [⇡]M [V ⇡
M�

]M (s)|

= |(T ⇡
M�

V ⇡
M�

)(�(s))� T [⇡]M [V ⇡
M�

]M (s)|

= |R⇡
�(�(s)) + �hP⇡

� (�(s)), V
⇡
M�

i �R[⇡]M (s)� �hP [⇡]M (s), V [⇡]M
M i|

 ✏R + �|hP⇡
� (�(s)), V

⇡
M�

i � hP [⇡]M (s), [V ⇡
M�

]M i|

= ✏R + �
���hP⇡

� (�(s)), V
⇡
M�

i � h�P [⇡]M (s), V ⇡
M�

i
���

 ✏R +
�✏PRmax

2(1� �)
.

Now that we have a uniform upper bound on evaluation error, it might be attempting to argue that
we under-estimate ⇡?

M and over-estimate ⇡?
M�

at most this much, hence the decision loss is twice the
evaluation error. This argument does not apply here because ⇡?

M cannot be necessarily expressed as
a lifted abstract policy when � is not an exact bisimulation!

Instead we can use the following argument: for any s 2 S ,

V ?
M (s)� V

[⇡?
M�

]M

M (s) = V ?
M (s)� V ?

M�
(�(s)) + V ?

M�
(�(s))� V

[⇡?
M�

]M

M (s)


���Q?

M � [Q?
M�

]M
���
1

+

����[V
⇡?
M�

M�
]M � V

[⇡?
M�

]M

M

����
1

.

Here both terms can be bounded by ✏R
1�� + �✏PRmax

2(1��)2 but for different reasons: the bound applies to the
first term due to Claim (1) of Theorem 2, and applies to the second term through Eq.(4) as ⇡?

M�
is an

abstract policy.

3.2 Approximate Q?-irrelevance

When � is an approximate Q?-irrelevant abstraction with low approximation error, building a model
based on � may not seem a good idea, as the transitions and rewards for states with similiar Q?-values
may be drastically different, and the parameters of M� (as in Lemma 3) may not be meaningful at all.

Perhaps surprisingly, we can show that M� produces a near-optimal Q?-function hence a near-
optimal policy.
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abstract states, we may still have a reasonably large n�(D). Our loss bound will depend on n�(D)

and the approximation error of the representation �, but will not incur any dependence on the sample
size of individual states (which implicitly depends on |S|).

Recall that in the note on tabular RL we studied two approaches to the finite sample analyses of
certainty-equivalence: one through max⇡ kV ⇡

M � V ⇡
cM
k1 (uniform bound of policy evaluation errors)

and the other through kQ?
M � Q?

cM
k. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.

Before that, we need a few more notations: Let cM� = (�(S),A, bP�, bR�, �) be the estimated model
using the abstract representation. Let M� = (�(S),A, P�, R�, �) be the following MDP:

R�(x, a) =

P
s̃2��1(x) |Ds̃,a|R(s, a)

|D�(s),a|
, P�(x

0|x, a) =
P

s̃2��1(x) |Ds̃,a|P (x0|s, a)
|D�(s),a|

.

This is essentially the definition of M� in Lemma 3 with px(s) / |Ds,a|. In words, M� is the “expecta-
tion” of cM� w.r.t. the randomness in data. If |Ds,a| gets multiplied by the same constant for all (s, a)
and goes to infinity, M� is what cM� converges to in the limit.

Bounding
���Q?

M � [Q?
cM�

]M
���
1

: We bound it by introducing an intermediate term:

���Q?
M � [Q?

cM�
]M

���
1


���Q?

M � [Q?
M�

]M
���
1

+
���[Q?

M�
]M � [Q?

cM�
]M

���
1

.

We have already bounded the first term on the RHS in Theorem 2 for approximate bisimulations and
Theorem 5 for approximate Q?-irrelevant abstractions, respectively, so it remains to deal with the
second term. Intuitively, cM� converges to M� in the limit, so the second term should go to 0 as n�(D)

goes to infinity, and the fact that � is an inexact abstraction for M is irrelevant here. However, we
cannot argue that data in Dx,a can be viewed as if they were sampled from P�(x, a), since the subsets
of data from different s have independent but non-identical distributions.

Fortunately, Hoeffding’s inequality applies to independent but non-identical distributions, and
we can leverage this property to get around the issue:

���[Q?
M�

]M � [Q?
cM�

]M
���
1

=
���Q?

M�
�Q?

cM�

���
1

 1

1� �

���Q?
M�

� TcM�
Q?

M�

���
1

=
1

1� �

���TcM�
Q?

M�
� TM�Q

?
M�

���
1

.

For each (x, a) 2 �(S)⇥A,

|(TcM�
Q?

M�
)(x, a)� (TM�Q

?
M�

)(x, a)|

= | bR�(x, a) + �h bP�(x, a), V
?
M�

i �R�(x, a)� �hP�(x, a), V
?
M�

i|

=

������
1

|Dx,a|
X

s2��1(x)

X

(r,s0)2Ds,a

⇣
r + �V ?

M�
(�(s0))�R(s, a)� �hP (s, a), [V ?

M�
]M i

⌘
������
.

If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ �VM�(s

0) and their expectation w.r.t. the randomness of (r, s0), so Hoeffding’s inequality
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✏Q? = 0

Theorem 5. Let � be an ✏Q? -approximate Q?
-irrelevant abstraction for M . Then, for M� constructed as in

Lemma 3 with arbitrary distributions {px}, we have k[Q?
M�

]M �Q?
Mk1  2✏Q?/(1� �).

Exact Q?-irrelevance To develop intuition, let’s see what happens when � is an exact Q?-irrelevant
abstraction: we can prove that [Q?

M�
]M = Q?

M , despite that the dynamics and rewards in M� “do not
make sense”. In particular, we know that for any s(1) and s(2) aggregated by �, for any a 2 A,

R(s(1), a) + �hP (s(1), a), V ?
M i = Q?(s(1), a) = Q?(s(2), a) = R(s(2), a) + �hP (s(2), a), V ?

M i.

This equation tells us that, although � aggregates states that can have very different rewards and
dynamics, they at least share one thing: the Bellman operator updates Q?

M in exactly the same way at
s(1) and s(2) (for any action).

Let [Q?
M ]�(x, a) = Q?

M (s, a) for any s 2 ��1(x); note that the notation [·]� can only be applied to
functions that are piece-wise constant under �. We now show that [Q?

M ]� is the fixed point of TM� ,
which proves the claim. This is because, for any x 2 �(S), a 2 A, let s be any state in ��1(x):

(TM� [Q
?
M ]�)(x, a) = R�(x, a) + �hP�(x, a), [V

?
M ]�i

=
X

s2��1(x)

px(s) (R(s, a) + �h�P (s, a), [V ?
M ]�))

=
X

s2��1(x)

px(s) (R(s, a) + �hP (s, a), V ?
M ))

=
X

s2��1(x)

px(s) [Q
?
M ]�(x, a) = [Q?

M ]�(x, a).

The approximate case The more general case is much trickier, as Q?
M is not piece-wise constant

when � is not exactly Q?-irrelevant, so we cannot apply TM� to it.
To get around this issue, define a new MDP M 0

� = (S,A, P 0
�, R

0
�, �), with

R0
�(s, a) = Es̃⇠p�(s)

[R(s̃, a)], P 0
�(s

0|s, a) = Es̃⇠p�(s)
[P (s0|s̃, a)].

Recall that {px} are a set of arbitrary distributions and we use them as weights for defining M�. The
model here, M�0 , also combines parameters from aggregated states, but is defined over the primitive

state space. This seemingly crazy model has two important properties: (1) Its optimal Q-value func-
tion coincides with that of M� (after lifting), and (2) It’s defined over S so we can apply its Bellman
operator to Q?

M .
We first prove that [Q?

M�
]M = Q?

M 0
�

, by showing that TM 0
�
[Q?

M�
]M = [Q?

M�
]M :

(TM 0
�
[Q?

M�
]M )(s, a) = R0

�(s, a) + �hP 0
�(s, a), [V

?
M�

]M i

=
X

s̃:�(s̃)=�(s)

px(s̃)
⇣
R(s̃, a) + �hP (s̃, a), [V ?

M�
]M

⌘

=
X

s̃:�(s̃)=�(s)

px(s̃)R(s̃, a) +
X

s̃:�(s̃)=�(s)

px(s̃)�h�P (s̃, a), V ?
M�

i

= R�(�(s), a) + �hP�(�(s), a), V
?
M�

i

= Q?
M�

(�(s), a) = [Q?
M�

]M (s, a).
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Loss of          :  approx. Q*-irrelevanceπ⋆
MϕM

• Approximate case: proof breaks as QM* not piece-wise constant 

• Workaround: define a new model Mφ’ over S 

• Can show: Mφ  and Mφ’  share the same Q* (up to lifting) 

•

Perhaps surprisingly, we can show that M� produces a near-optimal Q?-function hence a near-
optimal policy.2
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4 Finite sample analysis

We briefly discuss the finite sample guarantees of certainty-equivalence RL after pre-processing data
using a state abstraction � [8].

As before, we assume that the dataset, D = {Ds,a}(s,a)2S⇥A, is formed by sampling rewards and
transitions from each (s, a) a number of times. Previously we made the simplification assumption
that |Ds,a| is a constant for all (s, a); here we remove this assumption and allow their sizes to vary,
for the following reason: when the primitive state space S is very large and the amount of total data
is limited, there can be many states where we don’t even have any data, so assuming constant |Ds,a|
(which is at least 1) is unrealistic in this scenario. In fact, such a scenario is exactly where abstractions
can be very useful due to their generalization effects.

In particular, the effective sample size that will enter our analysis is

n�(D) := min
x2�(S)

|Dx,a|, where Dx,a :=
X

s2��1(x)

|Ds,a|.

In words, n�(D) is the least number of samples for any abstract state-action pair. Note that even if
|Ds,a| = 0 for many (s, a), if � aggregate states aggressively and data is relatively uniform over all
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Loss of          :  approx. Q*-irrelevanceπ⋆
MϕM

• Lesson: with Q*-irrelevance, the                           approach is not 
available;                  is the only choice 

• If φ does not respect transition/reward, our analysis does not have 
to either!

abstract states, we may still have a reasonably large n�(D). Our loss bound will depend on n�(D)

and the approximation error of the representation �, but will not incur any dependence on the sample
size of individual states (which implicitly depends on |S|).

Recall that in the note on tabular RL we studied two approaches to the finite sample analyses of
certainty-equivalence: one through max⇡ kV ⇡

M � V ⇡
cM
k1 (uniform bound of policy evaluation errors)

and the other through kQ?
M � Q?

cM
k. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.

Before that, we need a few more notations: Let cM� = (�(S),A, bP�, bR�, �) be the estimated model
using the abstract representation. Let M� = (�(S),A, P�, R�, �) be the following MDP:

R�(x, a) =

P
s̃2��1(x) |Ds̃,a|R(s, a)

|D�(s),a|
, P�(x

0|x, a) =
P

s̃2��1(x) |Ds̃,a|P (x0|s, a)
|D�(s),a|

.

This is essentially the definition of M� in Lemma 3 with px(s) / |Ds,a|. In words, M� is the “expecta-
tion” of cM� w.r.t. the randomness in data. If |Ds,a| gets multiplied by the same constant for all (s, a)
and goes to infinity, M� is what cM� converges to in the limit.

Bounding
���Q?

M � [Q?
cM�

]M
���
1

: We bound it by introducing an intermediate term:

���Q?
M � [Q?

cM�
]M

���
1


���Q?

M � [Q?
M�

]M
���
1

+
���[Q?

M�
]M � [Q?

cM�
]M

���
1

.

We have already bounded the first term on the RHS in Theorem 2 for approximate bisimulations and
Theorem 5 for approximate Q?-irrelevant abstractions, respectively, so it remains to deal with the
second term. Intuitively, cM� converges to M� in the limit, so the second term should go to 0 as n�(D)

goes to infinity, and the fact that � is an inexact abstraction for M is irrelevant here. However, we
cannot argue that data in Dx,a can be viewed as if they were sampled from P�(x, a), since the subsets
of data from different s have independent but non-identical distributions.

Fortunately, Hoeffding’s inequality applies to independent but non-identical distributions, and
we can leverage this property to get around the issue:

���[Q?
M�

]M � [Q?
cM�

]M
���
1

=
���Q?

M�
�Q?

cM�
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For each (x, a) 2 �(S)⇥A,

|(TcM�
Q?

M�
)(x, a)� (TM�Q

?
M�

)(x, a)|

= | bR�(x, a) + �h bP�(x, a), V
?
M�

i �R�(x, a)� �hP�(x, a), V
?
M�

i|

=

������
1

|Dx,a|
X

s2��1(x)

X

(r,s0)2Ds,a

⇣
r + �V ?

M�
(�(s0))�R(s, a)� �hP (s, a), [V ?

M�
]M i

⌘
������
.

If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ �VM�(s

0) and their expectation w.r.t. the randomness of (r, s0), so Hoeffding’s inequality
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Recap

•   
 

• Given weighting distributions {px}, define Mφ = (Sφ, A, Pφ, Rφ, γ)
Rφ(x, a) =  Σs∈φ-1(x)  px(s) R(s, a),   Pφ(x, a) =  Σs∈φ-1(x)  px(s) Φ P(s, a).

• How lossy is it to plan in Mφ and lift back to M? 
• If approx. bisimulation, use “                        ” type analysis 

 

• If approx. Q*-irrelevance, use “                ” type analysis

2 Approximate abstractions

In practice, exact abstractions are hard to find and verify, so we want our theory to handle approxi-
mate abstractions.

Definition 2 (lifting). For any function f that operates on �(S), let [f ]M denote its lifted version,
which is a function over S , defined as [f ]M (s) := f(�(s)). Similarly we can also lift a state-action
value function. Lifting a real-valued function f over states can also be expressed in vector form:
[f ]M = �>f .

Definition 3 (Approximate abstractions). Given MDP M = (S,A, P,R, �) and state abstraction � that
operates on S , define the following types of abstractions:

1. � is an ✏⇡? -approximate ⇡?-irrelevant abstraction, if there exists an abstract policy ⇡ : �(S) ! A,
such that kV ?

M � V [⇡]M
M k1  ✏⇡? .

2. � is an ✏Q? -approximate Q?-irrelevant abstraction if there exists an abstract Q-value function
f : �(S)⇥A ! R, such that k[f ]M �Q?

Mk1  ✏Q? .

3. � is an (✏R, ✏P )-approximate model-irrelevant abstraction if for any s(1) and s(2) where �(s(1)) =

�(s(2)), 8a 2 A,

|R(s(1), a)�R(s(2), a)|  ✏R,
����P (s(1), a)� �P (s(2), a)

���
1
 ✏P . (3)

Note that Definition 1 is recovered when all approximation errors are set to 0.
The following theorem characterizes the relationship between the 3 types of approximate abstrac-

tions, with Theorem 1 as a direct corollary.

Theorem 2. (1) If � is an (✏R, ✏P )-approximate model-irrelevant abstraction, then � is also an approximate

Q?
-irrelevant abstraction with approximation error ✏Q? = ✏R

1�� + �✏PRmax

2(1��)2 .

(2) If � is an ✏Q? -approximate Q?
-irrelevant abstraction, then � is also an approximate ⇡?

-irrelevant abstraction

with approximation error ✏⇡? = 2✏Q?/(1� �).

A useful lemma for proving Theorem 2:

Lemma 3. Let � be an (✏R, ✏P )-approximate model-irrelevant abstraction of M . Given any distributions

{px : x 2 �(S)} where each px is supported on ��1(s), define M� = (�(S),A, P�, R�, �), where R�(x, a) =

Es⇠px [R(s, a)], and P�(x0|x, a) = Es⇠px [P (x0|s, a)]. Then for any s 2 S, a 2 A,

|R�(�(s), a)�R(s, a)|  ✏R, kP�(x, a)� �P (s, a)k1  ✏P .

Proof. We only prove for the transition part; the reward part follows from a similar (and easier) ar-
gument. Consider any fixed x and a. Let qs := [P (x0|s, a)]x02�(S). By the definition of approximate
bisimulation we have kqs(1) �qs(2)k1  ✏P for any �(s(1)) = �(s(1)). The LHS of the claim on transition
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abstract states, we may still have a reasonably large n�(D). Our loss bound will depend on n�(D)

and the approximation error of the representation �, but will not incur any dependence on the sample
size of individual states (which implicitly depends on |S|).

Recall that in the note on tabular RL we studied two approaches to the finite sample analyses of
certainty-equivalence: one through max⇡ kV ⇡

M � V ⇡
cM
k1 (uniform bound of policy evaluation errors)

and the other through kQ?
M � Q?

cM
k. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.

Before that, we need a few more notations: Let cM� = (�(S),A, bP�, bR�, �) be the estimated model
using the abstract representation. Let M� = (�(S),A, P�, R�, �) be the following MDP:

R�(x, a) =

P
s̃2��1(x) |Ds̃,a|R(s, a)

|D�(s),a|
, P�(x

0|x, a) =
P

s̃2��1(x) |Ds̃,a|P (x0|s, a)
|D�(s),a|

.

This is essentially the definition of M� in Lemma 3 with px(s) / |Ds,a|. In words, M� is the “expecta-
tion” of cM� w.r.t. the randomness in data. If |Ds,a| gets multiplied by the same constant for all (s, a)
and goes to infinity, M� is what cM� converges to in the limit.

Bounding
���Q?

M � [Q?
cM�

]M
���
1

: We bound it by introducing an intermediate term:

���Q?
M � [Q?

cM�
]M

���
1


���Q?

M � [Q?
M�

]M
���
1

+
���[Q?

M�
]M � [Q?

cM�
]M

���
1

.

We have already bounded the first term on the RHS in Theorem 2 for approximate bisimulations and
Theorem 5 for approximate Q?-irrelevant abstractions, respectively, so it remains to deal with the
second term. Intuitively, cM� converges to M� in the limit, so the second term should go to 0 as n�(D)

goes to infinity, and the fact that � is an inexact abstraction for M is irrelevant here. However, we
cannot argue that data in Dx,a can be viewed as if they were sampled from P�(x, a), since the subsets
of data from different s have independent but non-identical distributions.

Fortunately, Hoeffding’s inequality applies to independent but non-identical distributions, and
we can leverage this property to get around the issue:

���[Q?
M�

]M � [Q?
cM�

]M
���
1

=
���Q?

M�
�Q?

cM�

���
1

 1

1� �

���Q?
M�

� TcM�
Q?

M�

���
1

=
1

1� �

���TcM�
Q?

M�
� TM�Q

?
M�

���
1

.

For each (x, a) 2 �(S)⇥A,

|(TcM�
Q?

M�
)(x, a)� (TM�Q

?
M�

)(x, a)|

= | bR�(x, a) + �h bP�(x, a), V
?
M�

i �R�(x, a)� �hP�(x, a), V
?
M�

i|

=

������
1

|Dx,a|
X

s2��1(x)

X

(r,s0)2Ds,a

⇣
r + �V ?

M�
(�(s0))�R(s, a)� �hP (s, a), [V ?

M�
]M i

⌘
������
.

If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ �VM�(s

0) and their expectation w.r.t. the randomness of (r, s0), so Hoeffding’s inequality
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Theorem 4. Let � be an (✏R, ✏P )-approximate model-irrelevant abstraction of M , and M� be an abstract model

defined as in Lemma 3 with arbitrary distributions {px}, then

����V
?
M � V

[⇡?
M�

]M

M

����
1

 2✏R
1� �

+
�✏PRmax

(1� �)2
.

Proof. We first prove that for any abstract policy ⇡ : �(S) ! A,
���[V ⇡

M�
]M � V [⇡]M

M

���
1

 ✏R
1� �

+
�✏PRmax

2(1� �)2
. (4)

To prove this, first recall the contraction property of policy-specific Bellman update operator for state-
value functions, which implies that
���[V ⇡

M�
]M � V [⇡]M

M

���
1

 1

1� �

���[V ⇡
M�

]M � T [⇡]M [V ⇡
M�

]M
���
1

=
1

1� �

���[T ⇡
M�

V ⇡
M�

]M � T [⇡]M [V ⇡
M�

]M
���
1

.

For notation simplicity let R⇡0
(s) := R(s,⇡0(s)) and P⇡0

(s) := P (s,⇡0(s)). For any s 2 S ,

|[T ⇡
M�

V ⇡
M�

]M (s)� T [⇡]M [V ⇡
M�

]M (s)|

= |(T ⇡
M�

V ⇡
M�

)(�(s))� T [⇡]M [V ⇡
M�

]M (s)|

= |R⇡
�(�(s)) + �hP⇡

� (�(s)), V
⇡
M�

i �R[⇡]M (s)� �hP [⇡]M (s), V [⇡]M
M i|

 ✏R + �|hP⇡
� (�(s)), V

⇡
M�

i � hP [⇡]M (s), [V ⇡
M�

]M i|

= ✏R + �
���hP⇡

� (�(s)), V
⇡
M�

i � h�P [⇡]M (s), V ⇡
M�

i
���

 ✏R +
�✏PRmax

2(1� �)
.

Now that we have a uniform upper bound on evaluation error, it might be attempting to argue that
we under-estimate ⇡?

M and over-estimate ⇡?
M�

at most this much, hence the decision loss is twice the
evaluation error. This argument does not apply here because ⇡?

M cannot be necessarily expressed as
a lifted abstract policy when � is not an exact bisimulation!

Instead we can use the following argument: for any s 2 S ,

V ?
M (s)� V

[⇡?
M�

]M

M (s) = V ?
M (s)� V ?

M�
(�(s)) + V ?

M�
(�(s))� V

[⇡?
M�

]M

M (s)


���Q?

M � [Q?
M�

]M
���
1

+

����[V
⇡?
M�

M�
]M � V

[⇡?
M�

]M

M

����
1

.

Here both terms can be bounded by ✏R
1�� + �✏PRmax

2(1��)2 but for different reasons: the bound applies to the
first term due to Claim (1) of Theorem 2, and applies to the second term through Eq.(4) as ⇡?

M�
is an

abstract policy.

3.2 Approximate Q?-irrelevance

When � is an approximate Q?-irrelevant abstraction with low approximation error, building a model
based on � may not seem a good idea, as the transitions and rewards for states with similiar Q?-values
may be drastically different, and the parameters of M� (as in Lemma 3) may not be meaningful at all.

Perhaps surprisingly, we can show that M� produces a near-optimal Q?-function hence a near-
optimal policy.
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2✏Q?

(1� �)2
<latexit sha1_base64="FHcFRjNCZotKG6rs+93jM89H3n0=">AAACEXicbVBNS8NAEN3Ur1q/oh69BItQD5akCHosevHYgv2AJi2T7aZdupuE3Y1QQv6CF/+KFw+KePXmzX/jts1BWx8MPN6bYWaeHzMqlW1/G4W19Y3NreJ2aWd3b//APDxqyygRmLRwxCLR9UESRkPSUlQx0o0FAe4z0vEntzO/80CEpFF4r6Yx8TiMQhpQDEpLA7PiBgJwWnNJLCnTStrsu1KByLK04ly4I+Aczvu1bGCW7ao9h7VKnJyUUY7GwPxyhxFOOAkVZiBlz7Fj5aUgFMWMZCU3kSQGPIER6WkaAifSS+cfZdaZVoZWEAldobLm6u+JFLiUU+7rTg5qLJe9mfif10tUcO2lNIwTRUK8WBQkzFKRNYvHGlJBsGJTTQALqm+18Bh0REqHWNIhOMsvr5J2rerYVad5Wa7f5HEU0Qk6RRXkoCtUR3eogVoIo0f0jF7Rm/FkvBjvxseitWDkM8foD4zPH35RnWU=</latexit><latexit sha1_base64="FHcFRjNCZotKG6rs+93jM89H3n0=">AAACEXicbVBNS8NAEN3Ur1q/oh69BItQD5akCHosevHYgv2AJi2T7aZdupuE3Y1QQv6CF/+KFw+KePXmzX/jts1BWx8MPN6bYWaeHzMqlW1/G4W19Y3NreJ2aWd3b//APDxqyygRmLRwxCLR9UESRkPSUlQx0o0FAe4z0vEntzO/80CEpFF4r6Yx8TiMQhpQDEpLA7PiBgJwWnNJLCnTStrsu1KByLK04ly4I+Aczvu1bGCW7ao9h7VKnJyUUY7GwPxyhxFOOAkVZiBlz7Fj5aUgFMWMZCU3kSQGPIER6WkaAifSS+cfZdaZVoZWEAldobLm6u+JFLiUU+7rTg5qLJe9mfif10tUcO2lNIwTRUK8WBQkzFKRNYvHGlJBsGJTTQALqm+18Bh0REqHWNIhOMsvr5J2rerYVad5Wa7f5HEU0Qk6RRXkoCtUR3eogVoIo0f0jF7Rm/FkvBjvxseitWDkM8foD4zPH35RnWU=</latexit><latexit sha1_base64="FHcFRjNCZotKG6rs+93jM89H3n0=">AAACEXicbVBNS8NAEN3Ur1q/oh69BItQD5akCHosevHYgv2AJi2T7aZdupuE3Y1QQv6CF/+KFw+KePXmzX/jts1BWx8MPN6bYWaeHzMqlW1/G4W19Y3NreJ2aWd3b//APDxqyygRmLRwxCLR9UESRkPSUlQx0o0FAe4z0vEntzO/80CEpFF4r6Yx8TiMQhpQDEpLA7PiBgJwWnNJLCnTStrsu1KByLK04ly4I+Aczvu1bGCW7ao9h7VKnJyUUY7GwPxyhxFOOAkVZiBlz7Fj5aUgFMWMZCU3kSQGPIER6WkaAifSS+cfZdaZVoZWEAldobLm6u+JFLiUU+7rTg5qLJe9mfif10tUcO2lNIwTRUK8WBQkzFKRNYvHGlJBsGJTTQALqm+18Bh0REqHWNIhOMsvr5J2rerYVad5Wa7f5HEU0Qk6RRXkoCtUR3eogVoIo0f0jF7Rm/FkvBjvxseitWDkM8foD4zPH35RnWU=</latexit><latexit sha1_base64="FHcFRjNCZotKG6rs+93jM89H3n0=">AAACEXicbVBNS8NAEN3Ur1q/oh69BItQD5akCHosevHYgv2AJi2T7aZdupuE3Y1QQv6CF/+KFw+KePXmzX/jts1BWx8MPN6bYWaeHzMqlW1/G4W19Y3NreJ2aWd3b//APDxqyygRmLRwxCLR9UESRkPSUlQx0o0FAe4z0vEntzO/80CEpFF4r6Yx8TiMQhpQDEpLA7PiBgJwWnNJLCnTStrsu1KByLK04ly4I+Aczvu1bGCW7ao9h7VKnJyUUY7GwPxyhxFOOAkVZiBlz7Fj5aUgFMWMZCU3kSQGPIER6WkaAifSS+cfZdaZVoZWEAldobLm6u+JFLiUU+7rTg5qLJe9mfif10tUcO2lNIwTRUK8WBQkzFKRNYvHGlJBsGJTTQALqm+18Bh0REqHWNIhOMsvr5J2rerYVad5Wa7f5HEU0Qk6RRXkoCtUR3eogVoIo0f0jF7Rm/FkvBjvxseitWDkM8foD4zPH35RnWU=</latexit>



 18

Compare abstract model  
w/ bisimulation vs w/ Q*-irrelevance

Both guarantee optimality (exact case), but in different ways 

• Consider value iteration (VI) in true model vs abstract model 

• Bisimulation: every step of abstract VI resembles that step in true VI, 
throughout all iterations, b/c  

• Q*-irrelevance: abstract VI initially behaves crazily. It only starts to 
resemble true VI when the function is close to QM*
• This is a circular argument 

• Secret is stability—contraction of abstract Bellman update 

• Abstract Bellman update is a special case of projected Bellman 
update, and in general stability is not guaranteed. In that case, 
“Q*-irrelevance” alone is not enough to guarantee optimality

 8f : �(S) ! R, T [f ]M = [TM�f ]M
<latexit sha1_base64="lSA6auy6RB+Sa40GYLjzfdJAHrA=">AAACRXicbVDLSgMxFM3UV62vqks3wSJUkDIjgiIIRTduClX7gplhyKSZNjTzIMkIZRg/zo17d/6BGxeKuNVMW6S2HgicnHNvcu9xI0aF1PUXLbewuLS8kl8trK1vbG4Vt3daIow5Jk0cspB3XCQIowFpSioZ6UScIN9lpO0OrjK/fU+4oGHQkMOI2D7qBdSjGEklOUXL8kKOGIPeObSiPi1bPpJ9jFhylx5aMoSju+smt+kRfIC/biOFpmc7NXgBzSnRSWpO9kwKM9MplvSKPgKcJ8aElMAEdaf4bHVDHPskkJghIUxDj6SdIC4pZiQtWLEgEcID1COmogHyibCTUQopPFBKF6p11AkkHKnTHQnyhRj6rqrMBhazXib+55mx9M7shAZRLEmAxx95MYMqnSxS2KWcYMmGiiDMqZoV4j7iCEsVfEGFYMyuPE9axxVD8ZuTUvVyEkce7IF9UAYGOAVVcA3qoAkweASv4B18aE/am/apfY1Lc9qkZxf8gfb9A6LzscA=</latexit><latexit sha1_base64="lSA6auy6RB+Sa40GYLjzfdJAHrA="></latexit><latexit sha1_base64="lSA6auy6RB+Sa40GYLjzfdJAHrA="></latexit><latexit sha1_base64="lSA6auy6RB+Sa40GYLjzfdJAHrA="></latexit>
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The learning setting

• Given:                                    and φ 

• Algorithm: CE after processing data w/ φ 

• Shouldn’t assume |Ds,a| is the same for all (s, a)  

• … as we want to handle |D| << |S| 

• What should appear in the bound to describe sample size? 

• At the mercy of data to be exploratory
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4 Finite sample analysis

We briefly discuss the finite sample guarantees of certainty-equivalence RL after pre-processing data
using a state abstraction � [8].

As before, we assume that the dataset, D = {Ds,a}(s,a)2S⇥A, is formed by sampling rewards and
transitions from each (s, a) a number of times. Previously we made the simplification assumption
that |Ds,a| is a constant for all (s, a); here we remove this assumption and allow their sizes to vary,
for the following reason: when the primitive state space S is very large and the amount of total data
is limited, there can be many states where we don’t even have any data, so assuming constant |Ds,a|
(which is at least 1) is unrealistic in this scenario. In fact, such a scenario is exactly where abstractions
can be very useful due to their generalization effects.

In particular, the effective sample size that will enter our analysis is

n�(D) := min
x2�(S)

|Dx,a|, where Dx,a :=
X

s2��1(x)

|Ds,a|.

In words, n�(D) is the least number of samples for any abstract state-action pair. Note that even if
|Ds,a| = 0 for many (s, a), if � aggregate states aggressively and data is relatively uniform over all

9
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The learning setting

• Analysis varies according to whether φ is (approx.) bisimulation or 
Q*-irrelevant and the style (                          vs                 ) 

• Will show analysis of Q*-irrelevance (can only use “               ”) 
• Let       be the estimated model 
• Let Mφ be an abstract model w/ weighting distributions  
• Mφ  is the “expected model” of  
•  

abstract states, we may still have a reasonably large n�(D). Our loss bound will depend on n�(D)

and the approximation error of the representation �, but will not incur any dependence on the sample
size of individual states (which implicitly depends on |S|).

Recall that in the note on tabular RL we studied two approaches to the finite sample analyses of
certainty-equivalence: one through max⇡ kV ⇡

M � V ⇡
cM
k1 (uniform bound of policy evaluation errors)

and the other through kQ?
M � Q?

cM
k. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.

Before that, we need a few more notations: Let cM� = (�(S),A, bP�, bR�, �) be the estimated model
using the abstract representation. Let M� = (�(S),A, P�, R�, �) be the following MDP:
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This is essentially the definition of M� in Lemma 3 with px(s) / |Ds,a|. In words, M� is the “expecta-
tion” of cM� w.r.t. the randomness in data. If |Ds,a| gets multiplied by the same constant for all (s, a)
and goes to infinity, M� is what cM� converges to in the limit.
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We have already bounded the first term on the RHS in Theorem 2 for approximate bisimulations and
Theorem 5 for approximate Q?-irrelevant abstractions, respectively, so it remains to deal with the
second term. Intuitively, cM� converges to M� in the limit, so the second term should go to 0 as n�(D)

goes to infinity, and the fact that � is an inexact abstraction for M is irrelevant here. However, we
cannot argue that data in Dx,a can be viewed as if they were sampled from P�(x, a), since the subsets
of data from different s have independent but non-identical distributions.

Fortunately, Hoeffding’s inequality applies to independent but non-identical distributions, and
we can leverage this property to get around the issue:
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If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ �VM�(s

0) and their expectation w.r.t. the randomness of (r, s0), so Hoeffding’s inequality
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Approximation error 
• “Bias”, informally 
• Doesn’t vanish with more data 
• Smaller with a finer φ  

(not w/ bisimulation; we will see why…)

{
Estimation error 
• “Variance”, informally 
• Goes to 0 w/ infinite data 
• Smaller with a coarser φ

{
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• Reusing the analysis for                  
• Challenge: data is not generated from Mφ 
• Leverage the fact that Hoeffding can be applied to r.v.’s with non-

identical distributions

abstract states, we may still have a reasonably large n�(D). Our loss bound will depend on n�(D)

and the approximation error of the representation �, but will not incur any dependence on the sample
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and the other through kQ?
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k. To extend the first approach to the setting of abstractions we

need to assume approximate bisimulation, and to extend the second we only need approximate Q?-
irrelevance. We discuss the second approach in details below, which covers some important desider-
ata that also applies to the extension of the first approach.
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goes to infinity, and the fact that � is an inexact abstraction for M is irrelevant here. However, we
cannot argue that data in Dx,a can be viewed as if they were sampled from P�(x, a), since the subsets
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If we view the nested sum as a flat sum, the expression is the sum of the differences between random
variables r+ �VM�(s
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This completes the analysis.
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