State Abstractions
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* Abstraction ¢ : S =S5
==
¢ Surjection — aggregate states and treat as equwalent

» Are the aggregated states really equivalent? (X, ‘3 e ,q,o)

* Do they have the same... >

((
* optimal action? \ (Kﬂ /%’ \’U> {i C)C/‘ﬂ )

e Q* values?

e dynamics and rewards?




Outline of the lecture

1. |Define various notions/criteria of abstractions

2. |Study their relationships

3. Analyze how to use them (e.g., building an abstract model) in
planning and learning

* Abstract model will also appearin 1 &2



Abstraction hierarchy | [
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An abstraction ¢ is ... if ... v s, s@ where ¢(sV) = p(s?) ’ 1 \(\)
A |
- _ < ™

o rt*-irrelevant: 3wy, s.t. my,f(sW) = 115, (s@)

—_— W ses .

e Q*irrelevant: va, Q,,*(sW, a) = Q,,%(s®, a) )

o 2. Qw0 = Q' PLs/[<"

* Model-irrelevant: va e A, R(sM a) = R(s), a —
(bisimulation ( ) ( ) P(S S(wa.

vae A, x'e Sy P llss(l) a) =P(x" | s@ g)

zs'edﬂ(xl) P(s'Is(V, a)
JA

Theorem: Model-irrelevance = Q*-irrelevance = mt*-irrelevance



(x, zW) and (x, z?) cannot
be aggregated under the

A s’-based condition

MDP M JMarkov chain C g

P((X z') xz/@m

CWL mtegrated out by

(\ﬁ /%% . bisimulation




Abstraction induces an equivalence relation

* Reflexivity, symmetry, transitivity

* Equivalence notion is a canonical representation of abstraction
(i.e., what symbol you associate with each abstract state doesn’t matter; what
matters is which states are aggregated together)

* Partition the state space into equivalence classes

e — /_\

e Coarsest bisimulation is unique (see proof in notes) /\\

. sketch:\if)QLand ¢2 are poth bisimulations, their common
coarsening is also a bisimulation (two states are aggregated if

they are aggregated under either ¢1 or ¢2) \/

ry 0,2




The abstract MDP implied by bisimulation
L >f

¢ is bisimulation: R(s®W, a) = R(s®, a), P(x" | s0), a) = P(x" | s®@), a)
]\}7 — =
« MDP (S¢, A, Py, Rg, )

/
. ForanyxeS¢,aeA,x’eS¢ QS'&L' {,§)

. R¢(x a) = R(s, a) for any s € ¢p-1(x) k\/

* Py(x"lx, a)=P(x’ls, a) for any s € ¢-1(x) (@(S) ¢ Y QRSI))

* No way to distinguish between the two routes: \5“’ 0. 7 e |

(g
M generate data> (5, a7 ) S\, T{ W -
compress ) compress J
w/ ¢ l l \/ w/ ¢ X.h 2.
My {(p(s), a, 7, P(s))}

generate data




Implications of b|S|muIat|on

* Q*is preserved 7 g?s z(/Q

* Q)" is preserved for_anlaiﬂed from an abstract ,oo//cy

* the policy must take the same action (d|str|but|on) across
aggregated states ‘

o — %(4’ (9))

W&ﬂz)
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Extension to handle action aggregation

< GAray

{A, B} H

T
S B

7 St (b)

Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for
non-exact minimization in Markov Decision Processes. 2004.

_
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Definition 3 (Approximate abstractions). Given MDP M = (S, A, P, R, ~y) and state abstraction ¢ that
operates on S, define the following types of abstractions:

1. ¢ is an e,»-approximate w*-irrelevant abstraction, if there exists an abstract polic Sy = A,

such that ||V3; — VE]—MWOO @
/

2. ¢ is an eg+-approximate QQ*-irrelevant abstraction if there exists an abstract @)-value function
f:84 x A= R, such that ||[f]ar — Qisl|co £ €0+

—

3. ¢isan (e, €p)-approximate model-irrelevant abstraction if for any s() and s where ¢(s(V)) =
d(s?),Va € A, ¥ (‘)(’\ ;“’/ a,) ‘
IR(s"V,a) — R(s®, a)| < eg, | dP(sV, a) — dP(s?, a)“1 < ep. 3)

<

Useful notation: @ is a |(§>¢| X | & | matrix, with
D(x,s) = l[¢(s) = X]

. lifting a state-value function: [Vy; ], = ®'Vii &

Im
* collapsing the transition distribution: ® P(s, a) —__
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Theorem 2. (1) If ¢ is an (eg, ep)-approximate model-irr ion, then ¢ is also an approximate

(2) If ¢ is an eg«-approximate Q*-irrelevant abstraction, the 0 an approximate m*-irrelevant abstractzon

with approximation error ex+ = 2eq» /(1 — 7). o x
pr " en QA Y \/ \/ f( ?H (Q

e (2) follows directly from a known result; can you see”?

* Construct the f in the definition of approx. Q*-irrelevance:

¢ is an eg+-approximate ()=-i vant abstraction if there exists an abstract )-value function
f:8s x A— R, such that ||[f]m — Q)lleo < €Qx-

* Define My =(S¢, A, Po, Re, ¥) W/ any weighting distributions
{px: x € S¢}, where each pyis supported on ¢1(x)

Re(x, a) = Zsegrir) px(s) R(s, a), Po(x, a) = Lseprit) pxls) @ Ps, a).

V4
*| [Re(d(s), a) - R(s, a)| < ek, NPq;(qb(s), a) - D P(s, a)|'s£ Ep. 1

/

* Set f:=Q , bound 11Ty - Q4

11 /




@ W* F\)] v vw>>f

C@P@ ¢) \/;?) <y, Av> = uﬂ\),
N




P P(s"0) = § Pls7ay

N

\;Dg N Q( .
15

£ 2 T



12

Outline of the lecture

. |Define various notions/criteria of abstractions

. |Study their relationships

. |Analyze how to use them (e.g., building an abstract model) in

planning and learning

* e.g., plan in My to reduce computational cost %

* If ¢ is not exact bisimulation, what's sub-optimality as a
function of (&g, ep) ? (Partially answered; will take a closer look)

J

* What if ¢ is only approximately Q*-irrelevant? |s the abstract
model still useful? Can we still bound loss as a function of gg+?

* Learning setting?
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Loss of TC,\’Z¢M: approx. bisimulation

Recall: My defined using any weighting distributions {px}satisfies

[Rop(d(s), a) - R(s, a)| < er, ||Pe((s), a) - D P(s, a)||1 < ep.

26R fYEPRmax

B e T LR

Vi — Vap ™

2€R 'YGPRmaX
< -2 T a—y)

Apply earlier Theorem:

[war, I

Vir = Vi

Can improve:

< €R 4+ erPanaX
T 1oy 2(1—9)?

‘ oo

Idea: forany m: Sy — A, |

Finally,

[WJ*\4¢]M [771*\/[¢]M

Vir(s) =V 7 (s) = Vir(s) — Vi, (8(s)) + Vi, (6(s)) = Vi, ™ (5)

(e, I

< @~ @3 laa]| _+ | vnae - vi

0. @)

Lesson: w/ approx. bisimulation, take the max. [|V{; — V|« route
instead of the 1€y — @3l route to save dependence on horizon
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Loss of TC@M: approx. Q*-irrelevance

* My well defined, but transitions/rewards don’t make sense

* Can still show: [[[@4f, v — Qisllee < 2¢q+/(1—7)

———

. Exact case (€9 = 0): v s, 5@ where ¢(s1) = ¢(s®?)
R(s™, a) +v(P(sM,a), Vi) = Q" (s, a) = Q*(s®),a) = R(s®, a) + v(P(s®), ), Vi)

“inverse” of lifting (can only be applied to piece-wise constant functions)

So: (TMfQumle)(z,a) = Ry(z,a) +V<P¢(l‘ a), [Varle)

= Y pa(s) (R(s,a) + v(®P(s,a), [Virls))
s€p1(z)

= Y pa(s) (R(s,a) +v(P(s,a), Vi)
s€p~ ()

— Z px(S) [Q?\A(p(m,a) — [Q}k\/.f]ﬁb(xva)
s€p~1(z)
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Loss of T3 - approx. Q*irrelevance

M

Approximate case: proof breaks as Q,," not piece-wise constant

Workaround: define a new model My over S
Réb(& CL) — E§Np¢(s) [R(gv a)]v Pq/b(S/‘S, CL) =5

§~Po(s)
Can show: My and M, share the same Q* (up to lifting)

1 *
< rei e

l1@as,ln — Qa|_ =] S

Qir, ~ Qi

o0

(T, Qs ) (s, @) — Qi (s, 0)]
= |Ry(s,a) +v(Py(s,a), Vi) — Qi (s, a)

( > px(E)(R(E,a)+W<P(§aa)aVﬁ>)>Q?w(saa)

5:0(5)=¢(s)

5:0(8)=¢(s)

[P(s']3,a)].

Z px(§>(2€Q*)

= 26@* .
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Loss of TC@M: approx. Q*-irrelevance

* Lesson: with Q*-irrelevance, the max, |V — VZ|l. approach is not

available; @i — Q% is the only choice

* If ¢ does not respect transition/reward, our analysis does not have
to either!
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Recap

e Theorem 2. (1) If ¢ is an (er, ep)-approximate model-irrelevant abstraction, then ¢ is also an approximate

*_ . . . . . . €ER YeEP Rmax
QQ*-irrelevant abstraction with approximation error eg- = 1= T 2072 -

(2) If ¢ is an eq~-approximate QQ*-irrelevant abstraction, then ¢ is also an approximate m*-irrelevant abstraction
with approximation error e« = 2eq+ /(1 — 7).

* Given weighting distributions {p.}, define My = (S¢, A, Ps, Re, V)
Ro(x, a) = Lsepix) px(s) R(s, a), Po(x, a) = Esepi(x) px(s) @ P(s, a).
* How lossy is it to plan in My and lift back to M?
* If approx. bisimulation, use “max, |[Vi; - V|~ type analysis

e |f approx. Q*-irrelevance, use “1@u — @5l type analysis

YL

V]C[ B VM 263 ’}/GpRmaX

< +
o 1=v  (1=97)

YL

V]\*/[ o VM S 26@*

< (1—7)2
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Compare abstract model
w/ bisimulation vs w/ Q*-irrelevance

Both guarantee optimality (exact case), but in different ways

e Consider value iteration (VI) in true model vs abstract model

e Bisimulation: every step of abstract VI resembles that step in true VI,
throughout all iterations, b/c Vf: ¢(S) = R, T[flm = [Ta, flm

* Q*irrelevance: abstract VI initially behaves crazily. It only starts to
resemble true VI when the function is close to Qum*

This is a circular argument T = [Tar, [Qalol v
Secret is stability—contraction of abstract Bellman update

Abstract Bellman update is a special case of projected Bellman
update, and in general stability is not guaranteed. In that case,
“Q*-irrelevance” alone is not enough to guarantee optimality
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The learning setting

* Given: D ={D;q}(s,a)esxa and ¢
* Algorithm: CE after processing data w/ ¢
* Shouldn’t assume |Ds,| is the same for all (s, a)
* ... as we want to handle |D| << |§]
* What should appear in the bound to describe sample size?

ne(D) = xe‘rsﬂi,geAlD"”al’ where D, , = U Bl

* At the mercy of data to be exploratory
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The learning setting

Analysis varies according to whether ¢ is (approx.) bisimulation or
Q*-irrelevant and the style ( max; [[Vi; — VZ|le VS Q) — Q%)

Will show analysis of Q*-irrelevance (can only use “|Q3, — Q%)
Let 31, be the estimated model

Let M, be an abstract model w/ weighting distributions pz(s) o [Ds,ql
My is the “expected model” of a7,

Qi — Q3 | <

Qs — @ |+ @l 1@ ]

e e
Approximation error Estimation error
« “Bias”, informally e “Variance”, informally
e Doesn’t vanish with more data « Goes to O w/ infinite data
« Smaller with a finer ¢ « Smaller with a coarser ¢

(not w/ bisimulation; we will see why...)
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Qi — @3, 1| _ <

Qs — @+ @ s — @3 |
—— et

already handled to be analyzed

* Reusing the analysis for [|Q3; — @5l
* Challenge: data is not generated from M

* |everage the fact that Hoeftding can be applied to r.v.’s with non-
identical distributions
1@, 1ar — (@5 ]

1
< -
=12,

* *
o0 QM(b QM<Z5 o’

1
Qhr, = Tar, @i, |_ = 7= - | 752, Qs — Thr, Qi

/

|(TM\¢Q7\4¢)(ZU, CL) - (TM¢Q?\/[¢)($7GJ)|
= |Ry(x,a) + 7(Py(x,a), V3y,) — Ry(x,a) — v(Pys(x,a), Viy,)|

‘ oo

— Y Y (r+ Vi) - Rls.@) = 2(P(s,0), Vi )




