
Notes on Importance Sampling and Policy Gradient

Nan Jiang

November 22, 2023

1 Importance Sampling

1.1 Estimating expectation using samples from a different distribution

Consider the problem of estimating Ex∼p[f(x)] for distribution p ∈ ∆(X) and function f : X → R. If
we can sample x ∼ p, the standard Monte-Carlo estimate is f(x), and averaging such estimates over
multiple i.i.d. samples of x will give us an accurate estimate of Ex∼p[f(x)]. This is particularly useful
if it is easy to sample from p but difficult to calculate the integral in Ex∼p[f(x)].

Now what if we cannot sample from p, but have access to x ∼ q for some other distribution
q ∈ ∆(X)? It turns out that, if p is fully supported on q, that is, for all x ∈ X where p(x) > 0 we
have q(x) > 0, then the following importance weighted estimator also gives an unbiased estimate of
Ex∼p[f(x)]:

p(x)

q(x)
f(x). (1)

To verify unbiasedness:

Ex∼q

[
p(x)

q(x)
f(x)

]
=
∑
x∈X

q(x)
p(x)

q(x)
f(x) =

∑
x∈X

p(x)f(x) = Ex∼p[f(x)].

p(x)/q(x) has many names: importance weight, importance ratio, or inverse propensity score (IPS).
A useful property of importance ratio to keep in mind is that

Ex∼q

[
p(x)

q(x)

]
= 1. (2)

Bibliographical remarks Traditionally, the term “importance sampling” (IS) refers to the procedure
of designing the distribution q to achieve lower variance than the standard MC estimate. The resulting
estimator is called importance weighted estimator or IPS estimator. In RL, it is often the case that q
is given and the IPS estimator has higher variance than on-policy MC, so IS is not a very appropriate
term in this context, despite its prevalence in literalture.

1.2 Application to contextual bandits

Consider a contextual bandit problem with context space X , discrete action space A, and R : X ×A →
∆([0, 1]) maps (x, a) to a distribution over rewards with bounded range [0, 1]. Let d0 ∈ ∆(X) be the
context distribution.

1

Suppose we have collected a dataset {(x, a, r)} by sampling x ∼ d0, a ∼ πb(x) where πb is a
stochastic behavior policy, and r ∼ R(x, a). Can we use this dataset to estimate J(π) := E[r|a ∼ π], the
value of a target policy π that is different from πb?

It turns out that, if π is fully supported on πb, then we can use importance sampling to form the
following unbiased estimate: for a single sample (x, a, r), the estimate is

ρ r, where ρ =
π(a|x)
πb(a|x)

. (3)

To verify unbiasedness, let p denote the joint distribution over (x, a, r) induced by π and q denote that
induced by πb. By importance sampling we have

E[r|a ∼ π] = E(x,a,r)∼p[r] = E(x,a,r)∼q

[
p(x, a, r)

q(x, a, r)
r

]
.

Now let’s take a closer look at the importance ratio:

p(x, a, r)

q(x, a, r)
=

d0(x)π(a|x)R(r|x, a)
d0(x)πb(a|x)R(r|x, a)

=
π(a|x)
πb(a|x)

= ρ.

The nice thing here is that d0(x) and R(r|x, a) are inherent properties of the process (and unknown
in most occasions) and do not change when we deploy different policies, so they cancel out in the
importance ratio. Later we will see similar phenomenon in the multi-step case.

Variance analysis While the estimator is unbiased, the variance can be quite large when π and πb are
very different from each other. Below we analyze a typical setting where πb is the uniformly random
policy a ∼ U and π is a deterministic policy.

Let K := |A|. With slight abuse of notation (we will treat π as a mapping from x to deterministic
action below), the importance ratio can be written as ρ = I[a=π(x)]

1/K .
While it is somewhat difficult to characterize the variance for a general reward function, it is

instructive to consider a special case where r is a deterministic constant. Note that in this case the
standard MC estimate has 0 variance. What is the variance of IS?

V[ρr|a ∼ U] = r2V[ρ|a ∼ U]

= r2(E[ρ2|a ∼ U]− (E[ρ|a ∼ U])2)

= r2(E[ρ2|a ∼ U]− 1) (the mean of ρ is always 1)

= r2
(
E
[
I[a = π(x)]

1/K2

∣∣∣ a ∼ U

]
− 1

)
= r2(K − 1).

So the variance of IS grows almost linearly with the number of actions K. One way to think about it
is that IS is simply picking out all data points where a happens to be the action that π wants to take.
In general only 1/K data points are “valid” so the effective sample size is K times smaller than what
it appears to be.

For general reward distributions with bounded range [0, 1], we can similarly upper bound the
variance:

V[ρr|a ∼ U] ≤ E[ρ2r2|a ∼ U] ≤ E[ρ2|a ∼ U] = K.

And the special case of deterministic constant r shows that this inequality is roughly tight.

2

Concentration While the variance of ρr is practically high, it should be considered as a “low-
variance” random variable w.r.t. its range: If r ∈ [0, 1] almost surely, ρr ∈ [0,K], and we have shown
above that V[ρr] ≤ K, so the range is roughly equal to the variance.

As a result, when we prove concentration of IS estimator, using Bernstein’s will give significantly

better results than Hoeffding’s: With Hoeffding’s, we get K
√

1
2n ln 2

δ as the high probability bound
on deviation. With Bernstein’s, we get √

2K

n
ln

2

δ
+

2K

3n
ln

2

δ
.

The second term is a lower order term compared to the first term when n is large, so we have a

deviation bound of O(
√

K
n ln 1

δ). Compared to Hoeffding’s, we are saving a factor of
√
K by using

Berstein’s.

Variance reduction by weighted importance sampling (WIS) When πb is uniform and π is deter-
ministic, IS is basically picking out data points where a happens to match the action that π wants to
take, and discarding everything else. However, IS is taking average of r within this subsample, how come
that its variance is not 0 when r is constant, as we have seen above?

It turns out that IS is doing something slightly trickier. Let (xi, ai, ri)
n
i=1 be the dataset. The final

estimator given by IS is:
1

n

n∑
i=1

I[ai = π(xi)]

1/K
ri =

1

n/K

∑
i:ai=π(xi)

ri.

It’s indeed adding up the rewards within that subsample. But when it comes to normalization, instead
of normalizing using the subsample size |{i : ai = π(xi)}|, IS normalizes using the expected size n/K.
The variance in IS for constant r essentially comes from the randomness of the subsample size.

So an obvious improvement would be to normalize by |{i : ai = π(xi)}|. Generalizing this idea be-
yond the specific setting, we get the weighted IS: let ρi := π(ai|xi)/πb(ai|xi), WIS forms the following
estimate

1∑n
i=1 ρi

n∑
i=1

ρi ri. (4)

It is easy to verify that in the special case of uniform πb and deterministic π, WIS indeed has 0 variance.
WIS is generally biased: It can even run into the issue of division by 0 when no ai matches π(xi).

On the other hand, its asymptotic behavior is similar to IS, as
∑n

i=1 ρi ≈ n/K when n is large, so WIS
is also a consistent estimator.

Variance reduction by control variate Another way to fix the issue in the example of constant r is
the following: Recall that it’s possible to shift rewards around without making any actual changes. So
we can always subtract a constant c from all rewards, perform IS, and add c back to the final estimate;
Effectively we create a new CB problem where the reward is always lower than that in the current
problem by a constant c, and we estimate the value of a policy in the new problem and infer its value
in the current problem. It is easy to see that the variance of IS in the new problem is (r − c)2(K − 1),
so if we set c = r, the estimator has 0 variance!

3

In fact this idea can also be generalized: Suppose we are given Q̂ : X ×A → R such that Q̂(x, a) ≈
E[r|x, a], then the following estimator is also unbiased [1]: for every (x, a, r),

Ea′∼π[Q̂(x, a′)] + ρ
(
r − Q̂(x, a)

)
. (5)

As long as Q̂ is deterministic w.r.t. the data used for off-policy evaluation (which means, if Q̂ is
estimated from data, it has to use a separate dataset), the first term and ρQ̂(s, a) will cancel each other
in expectation, leaving alone ρr which is IS. In fact, IS can be viewed as a special case of DR with
Q̂ ≡ 0.

The estimator is called a doubly robust (DR) estimator [1], for the following reason: sometimes
πb is unknown and ρ needs to be estimated from data, introducing bias to IS. In DR, however, if
Q̂(x, a) = E[r|x, a] then the estimator is unbiased with arbitrarily badly estimated ρ; on the other
hand, if ρ is exact, then the estimator is also unbiased even with an arbitrarily bad Q̂, hence “doubly”
robust against potential biases.

1.3 Application to multi-step RL

Consider finite-horizon MDP M = (S,A, P,R, γ, d0) where d0 is the initial state distribution. For
simplicity assume all trajectories terminate within H steps from the initial state. Given sample tra-
jectories generated from πb, we can estimate J(π), the average return of a different policy π, using
importance sampling, as long as π is supported on πb.

Again, let p be the joint distribution over the entire trajectory τ := (s1, a1, r1, s2, . . . , sH , aH , rH)

induced by π, and q be that induced by πb. We have

J(π) = E

[
H∑

h=1

γh−1rh

∣∣∣ a1:H ∼ π

]
= Eτ∼p

[
H∑

h=1

γh−1rh

]
= Eτ∼q

[
p(τ)

q(τ)

H∑
h=1

γh−1rh

]

= Eτ∼q

[
d0(s1)π(a1|s1)R(r1|s1, a1)P (s2|s1, a1) · · ·π(aH |sH)R(rH |sH , aH)

d0(s1)πb(a1|s1)R(r1|s1, a1)P (s2|s1, a1) · · ·πb(aH |sH)R(rH |sH , aH)

H∑
h=1

γh−1rh

]

= Eτ∼q

[
π(a1|s1) · · ·π(aH |sH)

πb(a1|s1) · · ·πb(aH |sH)

H∑
h=1

γh−1rh

]
= E

[
π(a1|s1) · · ·π(aH |sH)

πb(a1|s1) · · ·πb(aH |sH)

H∑
h=1

γh−1rh

∣∣∣ a1:H ∼ πb

]
.

So the expression in the bracket is an unbiased estimate of J(π). Let ρh := π(ah|sh)/πb(ah|sh) and
ρ1:h be a shorthand for

∏h
h′=1 ρh′ , the per-trajectory IS estimator is [2, 3]:

ρ1:H

H∑
h=1

γh−1rh. (6)

In the special case where πb is uniformly random and π is deterministic, and reward is a non-zero
constant that only occurs at the end of every trajectory, it is easy to verify that the estimator’s variance
is proportional to KH , which is expoential in the problem horizon. (In fact we know that this is
inevitable in the worst-case; see [4].)

Per-step IS An improved version of the estimator leverages the fact that the rewards are additive
and can be treated separately. For rh, the actions ah+1:H do not really matter any more so we only

4

need to multiply it with the cumulative importance ratio up to step h. The per-step IS estimator is:

H∑
h=1

γh−1ρ1:h rh. (7)

The verification of its unbiasedness is left as an exercise.

Alternative interpretation of per-step IS, and DR for the multi-step setting [4] A re-expression of
Eq.(7) reveals that per-step IS can be viewed as bandit IS recursively applied at each time step: Define
v0 := 0, and

vH−h+1 := ρh(rh + γvH−h). (8)

One can verify that vH is exactly the same as Eq.(7). This recursive expression gives a new inductive
proof of the unbiasedness of per-step IS: Assume that vH−h is an unbiased estimate of V π(sh+1) for
the sh+1 observed in data. (The base case trivially holds as there are no more steps when h = H and
v0 = 0.) Then rh + γvH−h is an unbiased estimate of Qπ(sh, ah) for (sh, ah) observed in data.

Recall that in the data ah is chosen according to πb. Then at step h we essentially have the following
bandit problem: sh is the context, ah is the arm, and the random reward is rh + γvH−h with mean
Qπ(sh, ah). Therefore, ρh(rh + γvH−h) is an unbiased bandit IS estimator for Qπ(sh, π) = V π(sh), so
the induction holds.

This observation also makes it straightforward to apply the DR trick in the multi-step setting: Let
Q̂π be our estimated Q-value function for this problem. The following DR estimator [4]:

vDR
H−h+1 := Ea∼π[Q̂

π(sh, a)] + ρh

(
rh + γvDR

H−h − Q̂π(sh, ah)
)

(9)

is again an unbiased estimator for J(π).

WIS The IS and the DR estimators in the multi-step setting can be similarly extended to their
weighted versions; see [3, 5, 6].

Variance of per-step IS The variance of Eq.(7) also satisifies an interesting recursion, which has
important implications outside off-policy evaluation. Let Vh[·] and Eh[·] denote conditional variance
and expectation, respectively, conditioned on s1, a1, r1, . . . , sh−1, ah−1, rh−1. For simplicity assume
reward is a deterministic function of state and action, then

V Vh[vH−h+1] = Eh[v
2
H−h+1]− (Eh[vH−h+1])

2

= Eh[v
2
H−h+1]− (Eh[V

π(sh)])
2 (V π(sh) = Eh[vH−h+1

∣∣ sh])
= Eh[(ρhQ

π(sh, ah) + ρh (rh + γvH−h −Qπ(sh, ah)))
2]− (Eh[V

π(sh)])
2

= Eh[(ρhQ
π(sh, ah))

2] + Eh[ρ
2
h (rh + γvH−h −Qπ(sh, ah)))

2]− (Eh[V
π(sh)])

2

= Eh[(V
π(sh) + ρhQ

π(sh, ah)− V π(sh))
2] + γ2Eh[ρ

2
h (vH−h − V π(sh+1))

2
]− (Eh[V

π(sh)])
2

= Eh[V
π(sh))

2] + Eh[Vh[ρhQ
π(sh, ah)

∣∣ sh]] + γ2Eh[ρ
2
hVh+1[vH−h]]− (Eh[V

π(sh)])
2

= Vh[V
π(sh)] + Eh[Vh[ρhQ

π(sh, ah)
∣∣ sh]] + γ2Eh[ρ

2
hVh+1[vH−h]].

5

As a special case, if πb = π (on-policy) and the policy is deterministic, ρh ≡ 1 and the second term on
the RHS is 0 (because ah is not random conditioned on sh). In this case, the above equation becomes

Vh[vH−h+1] = Vh[V
π(sh)] + γ2Eh[Vh+1[vH−h]].

This is sometimes called the Bellman equation for variance, as it resembles the Bellman equation for
policy evaulation except that the “reward” is replaced by the conditional variance of value function,
and the discount factor is squared. Expanding this recursion yields

V[vH] =

H∑
h=1

γ2(h−1)Esh−1∼dπ
h−1,ah−1∼π

[
Vsh∼P (sh−1,ah−1)[V

π(sh)]
]
. (10)

The object on the RHS is the variance of V π w.r.t. the transition dynamics, averaged on the distribution
over states and actions induced by π.1 Recall that this is the kind of object we are dealing with in
the analysis of tabular methods, and using Hoeffding’s inequality to derive concentration bounds is
implicitly assuming maximum variance for every single transition.

However, while Vsh∼P (sh−1,ah−1)[V
π(sh)] can possibly have Θ(V 2

max) variance for an individual
state-action pair, such worst-case variance cannot occur throughout the entire state space for the
following reason: If every (s, a) has Vs′∼P (s,a)[V

π(sh)] = Θ(V 2
max), the RHS of Eq.(10) should be

Θ(HV 2
max) (ignoring γ for now); however, since vH is the MC estimate of return, we have V[vH] =

O(V 2
max)! This implies that along the distribution induced by π, the conditional variance of V π

w.r.t. transition distributions sum up to only V 2
max across H steps and does not scale with H . In

fact, state-of-the-art analyses of tabular RL often exploit this property and obtain tight bounds by
Bernstein’s inequality [see e.g., 7].

2 Policy gradient

2.1 Derivation

Consider the optimization of J(π), the average value of π under initial state distribution. For sim-
plicity assume that all trajectories terminate within H steps. Suppose we are given a parameterized
class of stochastic policies Π = {πθ : θ ∈ Θ}, such that πθ(a|s) is differentiable with respect to θ for all
(s, a) ∈ S ×A. By rolling out trajectories using πθ, we can effectively estimate ∇θJ(πθ), with an accu-
racy independent of the size of the state space, and perform gradient descent to find a local optimum.
The simplest method of this kind is called REINFORCE [8], which we derive below.

For simplicity we assume that reward is a deterministic function of state and action; the result
extends to stochastic rewards trivially. Let R(τ) denote the discounted sum of rewards on a trajectory
τ = s1, a1, r1, . . . , sH , aH , rH , i.e., R(τ) =

∑H
h=1 γ

h−1rh. Similarly let Pπ(τ) be the probability of τ

1In fact, such decomposition has a very regular pattern: we go through each random variable sh and (1) take expectation
of the estimator conditioned on everything up to sh, which gives us V π(sh), (2) take the conditional variance of V π(sh)

(the result of (1)) w.r.t. the “local” randomness of sh conditioned on everything before sh, and (3) take the expectation of the
conditional variance in (2) w.r.t. the variables before sh. Note that in steps (1)-(3) we have integrated out all r.v.’s in this process,
which has to be the case since the final variance is a deterministic quantity that does not depend on any realization of the r.v.’s.

6

under policy π. We will drop the θ in the subscript of ∇θ and πθ.

∇J(π) =
∑
τ

R(τ)∇Pπ(τ) =
∑
τ

R(τ)Pπ(τ)∇ logPπ(τ)

=
∑
τ

R(τ)Pπ(τ)∇ log (d0(s1)π(a1|s1)P (s2|s1, a1) · · ·π(aH |sH))

=
∑
τ

R(τ)Pπ(τ)∇

(
log d0(s1) +

H∑
h=1

log π(ah|sh) +
H−1∑
h=1

logP (sh+1|sh, ah)

)

=
∑
τ

R(τ)Pπ(τ)∇

(
H∑

h=1

log π(ah|sh)

)
= Eτ∼π

[
R(τ)

H∑
h=1

∇ log π(ah|sh)

]
.

This gives a version of REINFORCE: we can compute a stochastic gradient of ∇J(π) by (1) generate
a trajectory using π, and (2) compute R(τ)

∑H
h=1 ∇ log π(ah|sh).

The similarity in the derivation between PG and IS suggests that, conceptually what PG does is
essentially (1) use IS to evaluate the return of all policies in a small neighborhood around current π,
and (2) compute gradient based on the (approximate) function evaluations.

It is possible to obtain a stochastic gradient with lower variance by decomposing the rewards
over multiple steps. This is essentially the difference between per-trajectory & per-step importance
sampling: let dπ be the normalized state occupancy of π from initial distribution d0, and

∇J(π) =
1

1− γ
E(s,a)∼dπ [(∇ log π(a|s))Qπ(s, a)] . (11)

Using this equation, we can obtain another version of REINFORCE as follows: (1) generate a trajec-
tory using π, (2) pick a random time-step h with probability ∝ γh, (3) compute ∇ log π(ah|sh)

∑H
t=h γ

t−hrt

as an unbiased estimate of ∇J(π).
While Eq.(11) can also be derived in the “Monte-Carlo” style as above, below is a simpler proof

that uses the recursive structure of Bellman equations [9]:

Proof. Let’s start with the simple fact

V π(s) =
∑
a

π(a|s)Qπ(s, a).

Differentiate both sides:

∇V π(s) =
∑
a

(
(∇π(a|s))Qπ(s, a) + π(a|s)∇Qπ(s, a)

)
=
∑
a

(
π(a|s)(∇ log π(a|s))Qπ(s, a) + π(a|s)∇(R(s, a) + γEs′∼P (s,a)[V

π(s′)])
)

=
∑
a

π(a|s)
(
(∇ log π(a|s))Qπ(s, a) + γEs′∼P (s,a)[∇V π(s′)]

)
.

Now let dπt denote the distribution over st and at induced by policy π from the initial state distribution
d0; we will also write st ∼ dπt for its marginal on state. Take the expectation of the above equation

7

w.r.t. s ∼ dπt , we have

∇(Es∼dπ
t
[V π(s)]) = Es∼dπ

t ,a∼π[(∇ log π(a|s))Qπ(s, a)] + γEs∼dπ
t ,a∼π,s′∼P (s,a)[∇V π(s′)]

= E(s,a)∼dπ
t
[(∇ log π(a|s))Qπ(s, a)] + γEs′∼dπ

t+1
[∇V π(s′)]

= E(s,a)∼dπ
t
[(∇ log π(a|s))Qπ(s, a)] + γE(s′,a′)∼dπ

t+1
[(∇ log π(a′|s′))Qπ(s′, a′)] + γ2Es′′∼dπ

t+2
[∇V π(s′′)]

= . . . =

∞∑
t′=t

γt′−tE(s,a)∼dπ
t′
[(∇ log π(a|s))Qπ(s, a)].

The result follows by noticing that when t = 1, the LHS is ∇Es∼dπ
t
[V π(s)] = ∇Es∼d0

[V π(s)] = ∇J(π),
and the RHS is the desired expression as the normalized discounted occupancy is precisely dπ =

(1− γ)
∑∞

t′=1 γ
t′−1dπt′ .

Variance reduction in policy gradient A useful property of ∇ log π(a|s) is the following: for any
fixed s, if we draw actions a ∼ π(s), we would have

Ea∼π(s)[∇ log π(a|s)] =
∑
a∈A

∇π(a|s) = ∇
∑
a∈A

π(a|s) = 0.

Therefore, we can add any function f : S → R to the policy gradient without affecting its unbiased-
ness as follows:

∇J(π) =
1

1− γ
E(s,a)∼dπ [∇ log π(a|s) (Qπ(s, a)− f(s))] .

A popular choice of f is V π , the value function of π. Of course, V π is generally unknown and we
can only obtain an estimate V̂ π . One can use dynamic programming methods to estimate V̂ π and use
it to reduce the variance in policy gradient. One can even go further to replace Qπ(s, a) in Eq.(11)
with an estimated Q̂π(s, a) to further reduce variance at the cost of introducing bias to the gradient
estimate. In general, incorporating estimated value functions into policy gradient methods is known
as “actor-critic” [10]: the policy is an “actor” and the value function is a “critic” that assesses the
policy’s performance and offers guidance into how to improve the policy.

2.2 Analysis

We provide a sketch of typical analysis of PG here; refer to [11?] for further details. Roughly
speaking, since PG is essentially (stochastic) gradient descent, it is guaranteed to find an approximate
stationary point under mild conditions (i.e., even for non-convex problems), where the “size” of the
gradient is small: for example, let’s say the algorithm outputs π̂ = πθ̂ with a small ∥∇J(π̂)∥ for ∥ · ∥
being 2-norm.2 The key question is, therefore, when does a small ∥∇J(π̂)∥ translate to the global
optimality of π̂?

The standard analyses for answering this question is as follows:

2This definition applies when Θ = Rd. In general, especially when Θ is a restricted space, the definition should be
∇J(π̂)⊤(θ′ − θ̂) being small for all θ′ ∈ Θ.

8

J(π⋆)− J(π̂) =
1

1− γ
Es∼dπ⋆ [Qπ̂(s, π⋆)− V π̂(s)] (PD lemma)

≤ 1

1− γ
Es∼dπ⋆ [Qπ̂(s, π+)− V π̂(s)] (π+ := πQπ̂)

≤ ∥dπ⋆

/dπ̂∥∞
1− γ

Es∼dπ̂ [Qπ̂(s, π+)−Qπ̂(s, π̂)] (change of measure)

=
∥dπ⋆

/dπ̂∥∞
1− γ

Es∼dπ̂ [
∑
a

Qπ̂(s, a)(π+(a|s)− π̂(a|s))].

The change of measure requires that the function inside expectation to be non-negative, which is
why we relaxed π∗ to π+ earlier. Now part of the last line is somewhat similar to the PG expres-
sion: ∇J(π̂) = 1

1−γE(s,a)∼dπ̂

[
∇ log π̂(a|s)Qπ̂(s, a)

]
= 1

1−γEs∼dπ̂

[∑
a Q

π̂(s, a)∇π̂(a|s)
]
. There are two

differences: (1) π+ − π̂ vs. ∇π̂, and (2) the extra ∥dπ∗
/dπ̂∥∞, which we discuss separately below.

π+−π̂ vs. ∇π̂: We will see that this difference is mostly about the expressivity and parameterization
of the policy class. Define gπ̂(π) = Es∼dπ̂ [

∑
a Q

π̂(s, a)π(a|s)]; note that here π̂ is fixed and considered
a constant, and π as in π(a|s) is the only variable. Then,

Es∼dπ̂ [
∑
a

Qπ̂(s, a)(π+(a|s)− π̂(a|s))] = gπ̂(π+)− gπ̂(π̂).

Here gπ̂ is a linear function of [π(a|s)]s,a ∈ R|S×A|×1, gπ̂ = β⊤π with β(s, a) = Qπ̂(s, a)dπ̂(s). Like-
wise, the corresponding term in ∇J(π̂) can be written as Es∼dπ̂

[∑
a Q

π̂(s, a)∇π̂(a|s)
]
= β⊤∇π, where

∇π is treated as a |S × A| × d matrix with d being the number of parameters in θ.
Recall that we want to know whether a small ∥∇J(π̂)∥ (which means small ∥β⊤∇π∥) implies a

small β⊤(π+− π̂). A clearly sufficient condition is that there exists α ∈ Rd such that (∇π)×α ≈ (π+−
π̂). Here ∇π is the |S ×A| × d Jacobian characterizing how the policy changes its action distributions
in each state as the parameter changes. (∇π)× α can be interpreted as the change of π ∈ RS×A when
the parameter θ̂ ∈ Rd is changed along the direction of α ∈ Rd, so (∇π)× α ≈ (π+ − π̂) means that at
θ = θ̂, there exists a direction in the parameter space that changes the policy πθ̂ towards the direction
of π+. This is guaranteed when we use the tabular [11] or certain linear representations (π+ must be
in the policy class in the latter case). In general, however, such a direction may not be necessarily
available if the policy class does not have sufficient expressivity or is poorly parameterized around π̂,
which can lead to a poor stationary point policy.

∥dπ∗
/dπ̂∥∞: While the previous issue may be fixed by using a more expressive and proper parame-

terization, the distribution mismatch is a more fundamental problem. Since we have no control over
the coverage of dπ̂ due to the randomness of π̂, one recommendation is to run PG on initial distri-
bution ρ that is different from the d0 we use to define J(π), and ρ should be exploratory and cover
π∗. The stationary point of PG then guarantees that

∥∥∥Es∼dπ̂
ρ
[
∑

a Q
π̂(s, a)∇πβ0(a|s)]

∥∥∥, where dπρ is the

occupancy induced from ρ, so the density ratio we need to pay is ∥dπ∗
/dπ̂ρ∥∞ ≤ ∥dπ∗

/ρ∥∞/(1− γ). In
fact, in the next part of the course where we focus on exploration, we will see simple counterexam-
ples showing the failure of PG (and many other methods) with a non-exploratory ρ, even under the
tabular representation.

9

2.3 Natural Policy Gradient (NPG)

As we see in the previous section, a problem with PG is that poor parameterization may lead to a bad
optimization landscape for the gπ̂ function. As an extreme case, suppose in the neighborhood of θ̂,
regardless of the parameter value θ′, the corresponding policy always has the same action distribution
as θ̂, then clearly we will see ∇J(π) = 0 which by no means implies global optimality. In fact,
this is related to a more general problem with (stochastic) gradient descent, that it is not invariant
to reparameterization. To address this problem, when the objective depends on the parameter (θ)
through a probability distribution pθ(·),3 we can choose a more “natural” way to measure the change
in parameters (hence the name natural gradient): we can measure the difference between θ̂ and θ′

using the difference (in e.g., KL divergence) between their induced probability distributions, which
is invariant to reparameterization. We refer the readers to standard tutorials and [11] for further
background on natural gradient, and will directly give the closed-form update rule for NPG when
we use the most popular (tabular) softmax parameterization:4 for iterations k = 1, 2, . . .,

π(k+1)(a|s) ∝ π(k)(a|s) exp(ηQπ(k)

(s, a)), ∀(s, a) (12)

with the initial policy being uniformly random over actions, and η is some appropriate learning rate.
We make a few remarks about this update rule.

1. The NPG does not have a standalone policy class Π, as it is implicitly using a tabular softmax
class. In the function approximation setting, the complexity of the policy class depends on the
function class we use to approximate Qπ .

2. To present a policy at iteration t, we need to keep around the Q-functions Qπ(1)

, Qπ(2)

, . . . ,
Qπ(k−1)

, which can be cumbersome and impractical.

3. Crucially, the update on action distribution is performed in per-state manner independently.
In each state, the update moves the action distribution slightly towards argmaxa Q

π(k)

in each
round (exp(ηQπ(k)

(s, a)) corresponds to softmax), making it a “soft” version of policy iteration.

The NPG update rule in Eq.(12) also has an alternative interpretation, which directly leads to its
global optimality guarantees. That is, it can be viewed as performing an online learning algorithm
called mirror descent.

Mirror descent interpretation Mirror descent is an online learning algorithm concerning the fol-
lowing problem: on a finite and discrete space X , for round k = 1, 2, . . . ,K, the learner proposes
distribution pk ∈ ∆(X), and nature reveals an arbitrary (and possibly adversarially chosen) function
fk : X → [0, 1]. The NPG update rule in Eq.(12) exactly corresponds to (up to rescaling of learning
rate) running an independent mirror descent procedure on each state s, with X = A, pk(·) = π(k)(·|s),
and fk(·) = Qπ(k)

(s, ·)/Vmax. Under appropriate learning rate, mirror descent enjoys the guarantee:
for any p ∈ ∆(X),

K∑
k=1

⟨p− pk, fk⟩ = O(
√

K log |X |).

3In our case this corresponds to πθ(·|s), where θ determines the distribution over actions.
4As we see below, even with such a tabular class whose complexity scales with |S|, NPG does not need to pay on |S|. This

is why it can avoid the representation issue associated with a restricted policy class |Π|.

10

Applying this guarantee to the NPG setup, we have: ∀s, ∀π(·|s),
K∑

k=1

(Qπ(k)

(s, π)−Qπ(k)

(s, π(k))) =

K∑
k=1

⟨π(·|s)− π(k)(·|s), Qπ(k)

⟩ = O(Vmax

√
K log |A|) (13)

Next we see how this guarantees a near-optimal policy found by NPG. The final policy output by
NPG, π̂, is the uniform mixture of π1, . . . , πK , whose expected return is simply J(π̂) = 1

K

∑K
k=1 J(π

(k)).
Then for any policy π we wish to compete with (such as the optimal policy π⋆), we have

J(π)− J(π̂) =
1

K

K∑
k=1

(J(π)− J(π(k)))

=
1

K

K∑
k=1

1

1− γ
Edπ [Qπ(k)

(s, π)−Qπ(k)

(s, π(k))] (PD lemma)

=
1

K(1− γ)

K∑
k=1

∑
s

dπ(s)(Qπ(k)

(s, π)−Qπ(k)

(s, π(k)))

=
1

K(1− γ)

∑
s

dπ(s)

K∑
k=1

(Qπ(k)

(s, π)−Qπ(k)

(s, π(k))) (change the summation order)

≤ 1

K(1− γ)

∑
s

dπ(s)O(Vmax

√
K log |A|) = O(

Vmax

1− γ

√
log |A|√
K

). (Eq.(13))

Note that when we change the order of summation over s and k, it is crucial that for all k the expecta-
tion is under the same distribution, dπ , otherwise the summation over k cannot be pushed inside for
each individual s.

Error in estimating Qπ(k)

Strictly speaking the above is not a learning algorithm, as it does not
require any data once the exact Qπ(k)

is given. (Again, this is similar to policy iteration.) In learning
settings, we will need to estimate the Q-functions from data, and here we briefly discuss how the
estimation errors of Q-functions affect the optimality guarantee.

Suppose in each iteration of NPG, instead of the exact Qπ(k)

we use an approximate version fπ(k) ≈
Qπ(k)

in the update rule in Eq.(12). Then

J(π)− J(π̂) =
1

K

K∑
k=1

1

1− γ
Edπ [fπ(k)

(s, π)− fπ(k)

(s, π(k))] (I)

+
1

K

K∑
k=1

1

1− γ
Edπ [fπ(k)

(s, π(k))−Qπ(k)

(s, π(k))] (II)

− 1

K

K∑
k=1

1

1− γ
Edπ [fπ(k)

(s, π)−Qπ(k)

(s, π)]. (III)

Since NPG is run on fπ(k)

, term (I) is controlled in exactly the same way as before, so we only need to
handle (II) and (III). The way to handle them depends on the concrete learning setting.

1. On-policy estimation [11] Similar to PG, we can run NPG in an on-policy fashion, where we
roll-out trajectories from π(k) and use Monte-Carlo return to fit the Q-function by regression. In this

11

case, we can easily control (II) when the function class can realize Qπ(k)

. However, we cannot directly
control (III), and can only hope that dπ

(k)

provides coverage over dπ , which results in a coverage
coefficient similar to what we pay in the PG analysis in Section 2.2.

2. Off-policy estimation [12] We can also run NPG on an offline dataset drawn from µ ∈ ∆(S ×A),
and use methods such as FQE (or its minimax variant) to estimate the Q-function. Under Bellman-
completeness, we can expect ∥fπ(k) − T π(k)

fπ(k)∥2,µ to be small. The rest is to show that such an
Bellman error (on µ) can control (II) and (III) under suitable coverage conditions.

To translate value function error into Bellman error, we use the familiar telescoping lemma: the
t-th term in (II) is

1

(1− γ)2
E
dπ(k)

[dπ]s

[fπ(k)

− T π(k)

fπ(k)

],

where dπ
(k)

[dπ]s
∈ ∆(S × A) is the discounted state-action occupancy of π when we use [dπ]s ∈ ∆(S)

as the initial distribution.5 The t-th term in (II) can be decomposed in a similar fashion, but on the
discounted state-action occupancy induced by the following process: (1) start from [dπ]s as the initial
distribution, (2) take π as the first action, and (3) take π(k) in the remaining steps.

At this point, it is tempting to require coverage of µ over these cumbersome occupancy measures.
However, note that the terms from (II) and (III) have the opposite signs in their Bellman errors. There-
fore, the common components of the two occupancies can cancel each other. We leave the proof as an
exercise to the reader; the simplified expression after cancellation is surprisingly clean:

(II) + (III) =
1

K(1− γ)

(
K∑

k=1

E
dπ(k) [fπ(k)

− T π(k)

fπ(k)

]−
K∑

k=1

Edπ [fπ(k)

− T π(k)

fπ(k)

]

)
.

This implies that the offline data µ only needs to cover dπ and dπ
(k)

. Furthermore,

1

1− γ
E
dπ(k) [fπ(k)

− T π(k)

fπ(k)

] = Ed0 [f
π(k)

(s, π(k))]− J(π(k)).

By using the pessimistic principle to construct the fπ(k)

estimate [12], it is easy to guarantee that
Ed0

[fπ(k)

(s, π(k))] ≤ J(π(k)). This way, the E
dπ(k) [·] term vanishes from the bound, and we only need

to pay coverage over the comparator policy π.

Remark Our derivations above reveal a result that holds more generally and connects to many
concepts in this course: ∀π, π̂, f ∈ RS×A, 6

J(π)− J(π̂) =
1

1− γ
Edπ [f(s, π)− f(s, π̂)] (policy optimization error)

+
1

1− γ
Edπ̂ [f − T π̂f]− 1

1− γ
Edπ [f − T π̂f].

The bound generalizes Lemma 4 in note3, which can be recovered by letting π = πf (the policy opti-
mization error term becomes non-positive and T π̂f = T f). We briefly touched on how the Bellman
error under dπ̂ vanishes under pessimism; in upcoming lectures we will see that optimism removes the
dπ term and leads to efficient exploration.

5All occupancies on state-actions by default, and we use [·]s to refer to their state-marginals when there is ambiguity.
6This result came from discussion with Tengyang Xie; a model-based corollary can be found in [13, Lemma 3.1].

12

References

[1] Miroslav Dudı́k, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.
In Proceedings of the 28th International Conference on International Conference on Machine Learning,
pages 1097–1104. Omnipress, 2011.

[2] Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the 17th International Conference on Machine Learning, pages 759–766,
2000.

[3] Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, University of Mas-
sachusetts Amherst, 2000.

[4] Nan Jiang and Lihong Li. Doubly Robust Off-policy Value Evaluation for Reinforcement Learn-
ing. In Proceedings of The 33rd International Conference on Machine Learning, volume 48, pages
652–661, 2016.

[5] Philip Thomas. Safe Reinforcement Learning. PhD thesis, University of Massachusetts Amherst,
2015.

[6] Philip Thomas and Emma Brunskill. Data-Efficient Off-Policy Policy Evaluation for Reinforce-
ment Learning. In Proceedings of the 33rd International Conference on Machine Learning, 2016.

[7] Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In Algorithmic Learning
Theory (ALT), 2012.

[8] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[9] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Informa-
tion Processing Systems, volume 99, pages 1057–1063, 1999.

[10] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014, 2000.

[11] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approx-
imation with policy gradient methods in markov decision processes. In Conference on Learning
Theory, pages 64–66. PMLR, 2020.

[12] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926, 2021.

[13] Anirudh Vemula, Yuda Song, Aarti Singh, Drew Bagnell, and Sanjiban Choudhury. The virtues
of laziness in model-based rl: A unified objective and algorithms. In International Conference on
Machine Learning, pages 34978–35005. PMLR, 2023.

13

	Importance Sampling
	Estimating expectation using samples from a different distribution
	Application to contextual bandits
	Application to multi-step RL

	Policy gradient
	Derivation
	Analysis
	Natural Policy Gradient (NPG)

