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Partially observable systems

• Key assumption so far: Markov property (Markovianness) 
• Real-world is non-Markov / partially observable (PO) 

- Or you wouldn’t need memory 
• Examples in ML

text modeling (last word cannot predict what’s 
next; need to capture long-term dependencies)

to ‘no-operation’ and ‘fire’. Arrows correspond to movements with (black) or without (white) ‘fire’.
There are positive correlations between actions that have the same movement directions (e.g., ‘up’
and ‘up+fire’), and negative correlations between actions that have opposing directions. These re-
sults are reasonable and discovered automatically in learning good predictions.

Distinguishing Controlled and Uncontrolled Objects is itself a hard and interesting problem.
Bellemare et al. [2] proposed a framework to learn contingent regions of an image affected by agent
action, suggesting that contingency awareness is useful for model-free agents. We show that our
architectures implicitly learn contingent regions as they learn to predict the entire image.

Prev.	frame Next	frame Prediction

Action Non-Action
Figure 8: Distinguishing controlled and
uncontrolled objects. Action image shows
a prediction given only learned action-
factors with high variance; Non-Action
image given only low-variance factors.
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, is more likely to transform an image

differently depending on actions, and so we assume such
factors are responsible for transforming the parts of the
image related to actions. We therefore collected the high
variance (referred to as “highvar”) factors from the model
trained on Seaquest (around 40% of factors), and collected
the remaining factors into a low variance (“lowvar”) subset.
Given an image and an action, we did two controlled for-
ward propagations: giving only highvar factors (by setting
the other factors to zeros) and vice versa. The results are
visualized as ‘Action’ and ‘Non-Action’ in Figure 8. In-
terestingly, given only highvar-factors (Action), the model
predicts sharply the movement of the object controlled by
actions, while the other parts are mean pixel values. In con-
trast, given only lowvar-factors (Non-Action), the model
predicts the movement of the other objects and the back-
ground (e.g., oxygen), and the controlled object stays at its
previous location. This result implies that our model learns
to distinguish between controlled objects and uncontrolled objects and transform them using disen-
tangled representations (see [25, 24, 37] for related work on disentangling factors of variation).

5 Conclusion
This paper introduced two different novel deep architectures that predict future frames that are de-
pendent on actions and showed qualitatively and quantitatively that they are able to predict visually-
realistic and useful-for-control frames over 100-step futures on several Atari game domains. To
our knowledge, this is the first paper to show good deep predictions in Atari games. Since our ar-
chitectures were domain independent we expect that they will generalize to many vision-based RL
problems. In future work we will learn models that predict future reward in addition to predicting
future frames and evaluate the performance of our architectures in model-based RL.
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video prediction

SLAM in robotics (“this place looks familiar; 
did I return to the same location?”)

“perceptual aliasing”
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Models of PO systems

• Observation space O (finite & discrete w.l.o.g.) 
• Actions space A (omitted for simplicity) 
• System starts from initial configuration, and outputs 

sequences o1 o2 o3… with randomness 
• Markov systems is a special case:  

Pr[oτ+1:τ+k | o1:τ] = Pr[oτ+1:τ+k | oτ]

or,  oτ+1:τ+k ⊥ o1:τ | oτ      (bold r.v.; non-bold realization) 
• In words, last observation is sufficient statistics of history for 

predicting future observations 
• How restrictive is Markov assumption?
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Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of 
states (i.e., number of observations) 
• System fully specified by the transition matrix T(o’|o) 
• # model parameters = |O|2 

• Without Markov assumption? 
• System fully specified by Pr[o’|h] for any history h (short for o1:τ) 
• Probabilities for different histories can be set completely 

independently— with horizon L, order |O|L  free parameters! 
• Even with a finite and constant observation space, fully general 

dynamical systems are intractable 
• Need structure…
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Partially observable systems

• Example structure: small & finite latent state space 
• “this place looks familiar; did I return to the same location?” 

• General PO system: you always visit a new location 
• With structural assumptions: the building only has this 

many different rooms. You will return to one or another. 

SLAM in robotics (“this scene looks 
familiar; did I return to the same location?”)
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Latent Models of PO systems

• Observation space O (finite & discrete w.l.o.g.)
• SLAM example: current sensory inputs

• Action space A (again will ignore for simplicity in most places)

• Latent/hidden state space Z 
• SLAM example: true location

• Model parameters 
• Emission probability: E(o|z)
• Transition probability: T(z’|z, a)

• Markov chain is special case: identity emission

hidden state

observation

T T

E E E

zt-1

ot-1 ot+1

zt+1zt

ot
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Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses 
information from “world state” 

• Noisier sensors = more PO? 
• Mathematically, if we fix the underlying MDP and vary the 

emission function, an emission that loses more information 
gives a more PO process? 

• Wrong: If emission discards all information, the process 
becomes Markov!
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Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a 
POMDP” 

• …which assumes POMDP is fully general? 
• Not really: there are systems that can be succinctly 

represented but require infinitely many hidden states to be 
represented as a POMDP/HMM 

• Again, one most generic way to specify a PO system is just 
Pr[o’|o1:τ], or Pr[o’| h ] for short (h for history)



9

Major challenge in PO systems: state representation

• Examples 
• Text prediction: how to compactly summarize the sentence 

so far to predict future words? (that’s what you are 
computing as the hidden vector in an LSTM) 

• SLAM: how to map history of sensor readings to physical 
locations (or a belief about it) 

• What does state mean in the PO setting?

Definition: State is a function of history, φ, that is a sufficient 
statistics for predicting future. That is, for all t:=oτ+1:τ+k and h:=o1:τ, 

Pr[t | h ] = Pr[t | φ(h) ]
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State!

• Trivial function that is state? 
• History itself (identity map): φ(h) = h 
• There is another one. will reveal later… 

• For HMMs/POMDPs, belief state, (Pr[zτ=z|h])z∈Z, is state 
• Things that are not states and people call “state” 

• Observation: e.g., Atari game frame 
• Hidden state (“World state”) : not a function of history 
• Agent state: can be approximately a state

Why?
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Issues with Latent Variable Models

• Typical learning algorithm for HMMs: EM 
• Subject to local optimum 
• More deeply: hidden state is an ungrounded object. If we re-

order the hidden state, that gives exactly the same process 
(over observables)! 

• World state is illusion; all matters is our sensory-motor 
experience. “to be is to be perceived” (George Berkeley) 

• But how to inject structure???
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The system dynamics matrix M

Pr(             )

past
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• Recall that Pr[o’|h]  fully specifies a PO system.  
• Alternatively, Pr[h] also does the job (w/ some redundancy; 

can you tell?) 
• Let’s stack them in a matrix 
• Claim: For HMM with n hidden  

states, the rank of this matrix  
is at most n

See project ref page for 
classical refs for PSRs 
http://nanjiang.cs.illinois.edu/

cs598project/



Low-rankness of SDM

• Proof: for any past h and future t, let the current timestep be τ 

• Dot-product between two vectors of dimension |Z|: one only 
depends on history and the other only depends on future—
implies low-rankness 

• rank of SDM is known as the linear dimension of the system 
• Can we directly work with systems whose SDM has low-rank, 

instead of going through the latent variable route???

Pr[ht] =
X

z2Z
Pr[ht, z⌧ = z]

=
X

z2Z
Pr[h, z⌧ = z]Pr[t | z⌧ = z, h]

=
X

z2Z
Pr[h, z⌧ = z]Pr[t | z⌧ = z].

<latexit sha1_base64="GqyAfgBBJcIVtpmIRaalupxAPSI="></latexit>
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The SDM M is a Hankel matrix

ε
ε

Pr(             )

Pr(             )

Pr(             )



ε
ε

past
fu

tu
re

maximal 
rank

B



ε
ε

past
fu

tu
re

maximal 
rank

B

B



ε
ε

past
fu

tu
re

maximal 
rank

B B

B



ε
ε

past
fu

tu
re

maximal 
rank

B B

B



ε
ε

past
fu

tu
re

maximal 
rank

B

B

B



ε
ε

past
fu

tu
re

maximal 
rank

b
!

∞

B

B

b
!

∞



ε
ε

past
fu

tu
re

maximal 
rank

b
!

∞

B

B

…= ×b
!

∞ Bo1P(o1…ol) ××Bol×



ε
ε

past
fu

tu
re

maximal 
rank

b
!

∞

maximal rank

B

B

…= ×b
!

∞ Bo1P(o1…ol) ××Bol×



T

H

past

fu
tu

re

maximal rank

Bo

PT ,H

PoT ,H

PT ,ε

oT

ε

b
!

∞

maximal 
rank

Pε,H

…= ×b
!

∞ Bo1Pr[o1…ol] ××Bol× b∗ = U
"
PT ,ε



T

H

past

fu
tu

re

maximal rank

Bo

PT ,H

PoT ,H

PT ,ε

oT

ε

b
!

∞

maximal 
rank

Pε,H

b∗ = U
"
PT ,ε

b
!
∞ = U

!
Pε,H(U

!
PT ,H)

+

Bo = U
!
PoT ,H(U

!
PT ,H)

+

consistent

Non-spectral algorithm
use (   ,    ) of just size so that  
          is invertible. PT ,H

T H

−1

−1

…= ×b
!

∞ Bo1Pr[o1…ol] ××Bol× b∗ = U
"
PT ,ε



T

H

past

fu
tu

re

maximal rank

Bo

PT ,H

PoT ,H

PT ,ε

oT

ε

b
!

∞

maximal 
rank

Pε,H

b∗ = U
"
PT ,ε

b
!
∞ = U

!
Pε,H(U

!
PT ,H)

+

Bo = U
!
PoT ,H(U

!
PT ,H)

+

Spectral algorithm
Use large (   ,    ), and let U  
consists of rank(M) leading left 
singular vectors of PT ,H

T H

consistent

…= ×b
!

∞ Bo1Pr[o1…ol] ××Bol× b∗ = U
"
PT ,ε



The predictive interpretation

• The semantics of the state representation used in PSR: 
• Or its linear transformation UT 
• Cond. prob. of a set of future events given the history h 

• Earlier question: what is the other trivial function that is always 
state??? 

• Answer: (exact) predictions of all future events is trivially state 
• If φ(h) = {Pr[t’|h]}t’∈O*, then Pr[t| h ] = Pr[t | φ(h) ], trivially 
• But this φ is infinite-dimensional and difficult to work with 
• PSR: when system has certain low-rank structure, the infinite-

dimensional object is uniquely determined by a subset of its 
coordinates, which is tractable.

PT |h
<latexit sha1_base64="kM8D1ntboe1d6LVbXYq/5p0fVVQ="></latexit><latexit sha1_base64="kM8D1ntboe1d6LVbXYq/5p0fVVQ="></latexit><latexit sha1_base64="kM8D1ntboe1d6LVbXYq/5p0fVVQ="></latexit><latexit sha1_base64="kM8D1ntboe1d6LVbXYq/5p0fVVQ="></latexit>

PT |h
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2-stage regression view [Hefny, Downey, Gordon 2015] 
• Col. of PT,H (PoT,H) indexed by h is prop. to estimated state of h (ho)
• Use regression (here mat inv) to learn the evolution of state given o
• |H| input-output pairs, each input & output are vectors in R|T|



• Recall  

• HMM can be converted into such a parametrization 
• For an HMM with transition T, emission E, initial dist. π,  

• b* = π , Bo = T diag{E[o|z(1)], …, E[o|z(|Z|)]}, b∞ = 1 
• “Observable Operator Model (OOM)” 
• Also known under the name Weighted Finite Automata (WFA)

Connections to HMMs

…= ×b
!

∞ Bo1
Pr[o1…ol] ××Bol

× b∗ = U
"
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Let f be the one-hot encoding of the last observation for an MC. 
Assume the transition matrix of the MC, T,  is invertible. Define      
as the set of length-1 sequences, then . 

T

f(h) = T−1PT |h

o’

o

P (o′|o)

f(h) = T−1PT |h

for h ending in o
f(h) = T−1PT |h

f(h) = T−1PT |h

=
o

0

0
1
0

0

.

.

.

.

.

.

T

Example: Markov Chain



• Recall that HMMs with n states has an SDM with rank ≤ n, 
hence can be represented by a PSR with rank ≤ n 

• Not vice versa: there exists PSR with constant size that cannot 
be represented by any HMM with finitely many hidden states 
• “Probability lock”: 0-1 sequence where the probability of 1 

appearing next goes like a sine wave sampled at an 
interval that is not a rational multiple of the wave’s period; 
see Jaeger [2000] for details

What systems fall in PSRs \ HMMs?



• Almost everything extend straightforwardly 
• … as long as you know how to define SDM 

• Pr[o1…ol] specifies an uncontrolled system 
• Pr[o1…ol || a0…al-1] specifies a controlled system 
• Actions are not r.v. (unless we fix a policy); they are interventions 
• “If I were to take a0…al-1, what’s the odds that I see o1…ol?”  
• Does it restrict us to open-loop policies? Answer: no. 

• Conditional: Pr[obs(t) | h || do act(t)] (notation from Boots et al’15)
• obs(.) and act(.) omit actions and obs., respectively  
• Hence t stands for “test”: take actions to probe the response of 

the system

Controlled systems



• Moment matching algorithm; no optimization 
• sensitive to model mismatch 

• Rely on linearity 
• some ideas extend to nonlinear but little can be said theoretically 

• Cannot handle rich/continuous observations well 
• Aim to learn Pr[o1…ol]  
• Explicitly modeling density of rich obs is hard (c.f., GAN) 
• There are a lot of details that we don’t care—need to factor that 

into PSR theory 
• When combined with planning, the approach is model-based RL 

(which isn’t working quite well yet in the era of deep RL)

Challenges in PSRs


