Partially observable systems and Predictive State Representation (PSR)

Nan Jiang
CS 542 Statistical RL

Partially observable systems

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
- Or you wouldn’t need memory
- Examples in ML

Alan Mathison Turing OBE FRS (/'tjverin//; 23 June 1912-7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. ${ }^{[2]}$ Turing was highly influential in the development of theoretical computer
science, providing a formalisation of the concepts of algorithm and computation with the
text modeling (last word cannot predict what's next; need to capture long-term dependencies)

SLAM in robotics ("this place looks familiar; did I return to the same location?")
"perceptual aliasing"

Models of PO systems

- Observation space O (finite \& discrete w.I.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_{1} O_{2} O_{3} \ldots$ with randomness
- Markov systems is a special case:

$$
\begin{gathered}
\operatorname{Pr}\left[o_{\tau+1: \tau+k} \mid o_{1: \tau}\right]=\operatorname{Pr}\left[o_{\tau+1: \tau+k} \mid o_{\tau}\right] \\
\text { or, } \boldsymbol{o}_{\tau+1: \tau+k} \perp \boldsymbol{o}_{1: \tau} \mid \boldsymbol{o}_{\tau} \quad \text { (bold r.v.; non-bold realization) }
\end{gathered}
$$

- In words, last observation is sufficient statistics of history for predicting future observations
- How restrictive is Markov assumption?

Complexity of Markov vs non-Markov systems

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
- System fully specified by the transition matrix $T\left(o^{\prime} \mid o\right)$
- \# model parameters $=|O|^{2}$
- Without Markov assumption?
- System fully specified by $\operatorname{Pr}\left[o^{\prime} \mid h\right]$ for any history h (short for $o_{1: \tau}$)
- Probabilities for different histories can be set completely independently— with horizon L, order $|O|^{L}$ free parameters!
- Even with a finite and constant observation space, fully general dynamical systems are intractable
- Need structure...

Partially observable systems

- Example structure: small \& finite latent state space
- "this place looks familiar; did I return to the same location?"
- General PO system: you always visit a new location
- With structural assumptions: the building only has this many different rooms. You will return to one or another.

SLAM in robotics ("this scene looks familiar; did I return to the same location?")

Latent Models of PO systems

- Observation space O (finite \& discrete w.I.o.g.)
- SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
- SLAM example: true location
- Model parameters
- Emission probability: $E(o \mid z)$
- Transition probability: $T\left(z^{\prime} \mid z, a\right)$

- Markov chain is special case: identity emission

Myth 1 about HMMs/POMDPs

- PO can stem from noisy sensors, which compresses/loses information from "world state"
- Noisier sensors = more PO?
- Mathematically, if we fix the underlying MDP and vary the emission function, an emission that loses more information gives a more PO process?
- Wrong: If emission discards all information, the process becomes Markov!

Myth 2 about HMMs/POMDPs

- When the problem is non-Markov, people will say "oh it's a POMDP"
- ...which assumes POMDP is fully general?
- Not really: there are systems that can be succinctly represented but require infinitely many hidden states to be represented as a POMDP/HMM
- Again, one most generic way to specify a PO system is just $\operatorname{Pr}\left[o^{\prime} \mid o_{1: \tau}\right]$, or $\operatorname{Pr}\left[o^{\prime} \mid h\right]$ for short (h for history)

Major challenge in PO systems: state representation

- Examples
- Text prediction: how to compactly summarize the sentence so far to predict future words? (that's what you are computing as the hidden vector in an LSTM)
- SLAM: how to map history of sensor readings to physical locations (or a belief about it)
- What does state mean in the PO setting?

Definition: State is a function of history, ϕ, that is a sufficient statistics for predicting future. That is, for all $t:=O_{\tau+1: \tau+k}$ and $h:=O_{1: \tau}$,

$$
\operatorname{Pr}[t \mid h]=\operatorname{Pr}[t \mid \phi(h)]
$$

State!

- Trivial function that is state?
- History itself (identity map): $\phi(h)=h$
- There is another one. will reveal later...
- For $\mathrm{HMMs} / \mathrm{POMDPs}$, belief state, $\left(\operatorname{Pr}\left[z_{\tau}=z \mid h\right]\right)_{z \in Z}$, is state
- Things that are not states and people call "state"
- Observation: e.g., Atari game frame
- Hidden state ("World state") : Why?
- Agent state: can be approximately a state

Issues with Latent Variable Models

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an ungrounded object. If we reorder the hidden state, that gives exactly the same process (over observables)!
- World state is illusion; all matters is our sensory-motor experience. "to be is to be perceived" (George Berkeley)
- But how to inject structure???

The system dynamics matrix M

- Recall that $\operatorname{Pr}\left[o^{\prime} \mid h\right]$ fully specifies a PO system.
- Alternatively, $\operatorname{Pr}[h]$ also does the job (w/ some redundancy; can you tell?)
- Let's stack them in a matrix
- Claim: For HMM with n hidden states, the rank of this matrix is at most n

See project ref page for classical refs for PSRs http://nanjiang.cs.illinois.edu/ cs598project/

Low-rankness of SDM

- Proof: for any past h and future t, let the current timestep be τ

$$
\begin{aligned}
\operatorname{Pr}[h t] & =\sum_{z \in \mathcal{Z}} \operatorname{Pr}\left[h t, \mathbf{z}_{\tau}=z\right] \\
& =\sum_{z \in \mathcal{Z}} \operatorname{Pr}\left[h, \mathbf{z}_{\tau}=z\right] \operatorname{Pr}\left[t \mid \mathbf{z}_{\tau}=z, h\right] \\
& =\sum_{z \in \mathcal{Z}} \operatorname{Pr}\left[h, \mathbf{z}_{\tau}=z\right] \operatorname{Pr}\left[t \mid \mathbf{z}_{\tau}=z\right] .
\end{aligned}
$$

- Dot-product between two vectors of dimension $|Z|$: one only depends on history and the other only depends on futureimplies low-rankness
- rank of SDM is known as the linear dimension of the system
- Can we directly work with systems whose SDM has low-rank, instead of going through the latent variable route???

The predictive interpretation

- The semantics of the state representation used in PSR: $P_{\mathcal{T} \mid h}$
- Or its linear transformation $U^{\top} P_{\mathcal{T} \mid h}$
- Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
- If $\phi(h)=\left\{\operatorname{Pr}\left[t^{\prime} \mid h\right]\right\}_{t^{\prime} \in O^{*}}$, then $\operatorname{Pr}[t \mid h]=\operatorname{Pr}[t \mid \phi(h)]$, trivially
- But this ϕ is infinite-dimensional and difficult to work with
- PSR: when system has certain low-rank structure, the infinitedimensional object is uniquely determined by a subset of its coordinates, which is tractable.

Connections to HMMs

- Recall $\operatorname{Pr}\left[o_{1} \ldots o_{l}\right]=b_{\infty}^{\top} \times B_{o_{l}} \times \cdots \times \boxed{B_{o_{1}}} \times b_{*}$
- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π,
- $b_{*}=\pi, B_{o}=T \operatorname{diag}\left\{E\left[o \mid z^{(1)}\right], \ldots, E\left[o \mid z^{(Z \mid)}\right]\right\}, b_{\infty}=\mathbf{1}$
- "Observable Operator Model (OOM)"
- Also known under the name Weighted Finite Automata (WFA)

Example: Markov Chain

Let f be the one-hot encoding of the last observation for an MC. Assume the transition matrix of the MC, T, is invertible. Define \mathcal{T} as the set of length-1 sequences, then .

$$
f(h)=T^{-1} P_{\mathcal{T} \mid h}
$$

What systems fall in PSRs \HMMs?

- Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$
- Not vice versa: there exists PSR with constant size that cannot be represented by any HMM with finitely many hidden states
- "Probability lock": 0-1 sequence where the probability of 1 appearing next goes like a sine wave sampled at an interval that is not a rational multiple of the wave's period; see Jaeger [2000] for details

Controlled systems

- Almost everything extend straightforwardly
- ... as long as you know how to define SDM
- $\operatorname{Pr}\left[o_{1 \ldots} . . o_{l}\right]$ specifies an uncontrolled system
- $\operatorname{Pr}\left[o_{1 \ldots} . . o_{l} \| a_{0 \ldots} a_{l-1}\right]$ specifies a controlled system
- Actions are not r.v. (unless we fix a policy); they are interventions
- "If I were to take $a_{0 . . .} a_{l-1}$, what's the odds that I see $o_{1 \ldots} . . o_{l}$?"
- Does it restrict us to open-loop policies? Answer: no.
- Conditional: $\operatorname{Pr}[\operatorname{obs}(t)|h| \mid d o \operatorname{act}(t)]$ (notation from Boots et al'15)
- obs(.) and act(.) omit actions and obs., respectively
- Hence t stands for "test": take actions to probe the response of the system

Challenges in PSRs

- Moment matching algorithm; no optimization
- sensitive to model mismatch
- Rely on linearity
- some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
- Aim to learn $\operatorname{Pr}\left[o_{1 \ldots} . . o_{l}\right]$
- Explicitly modeling density of rich obs is hard (c.f., GAN)
- There are a lot of details that we don't care—need to factor that into PSR theory
- When combined with planning, the approach is model-based RL (which isn't working quite well yet in the era of deep RL)

