CS 542 Statistical Reinforcement Learning

Nan Jiang

What's this course about?

- A grad-level seminar course on theory of RL
- with focus on sample complexity analyses
- all about proofs, some perspectives, 0 implementation
- No text book; material is created by myself (course notes)
- Related monograph under development w/ Alekh Agarwal, Sham Kakade, and Wen Sun
- See course website for more material and references

Who should take this course?

- This course will be a good fit for you if you either
- (A) have exposure to RL + comfortable with long mathematical derivations + interested in understanding RL from a purely theoretical perspective
- (B) are very familiar in a related theoretical field (e.g., learning theory) and comfortable with highly abstract description of concepts / models / algorithms
- For people not in (A) or (B): I also teach CS443 RL (Sp22), which focuses less on analyses \& proofs and more on algorithms \& intuitions

Prerequisites

- Maths
- Linear algebra, probability \& statistics, basic calculus
- Markov chains
- Optional: stochastic processes, numerical analysis
- Useful: TCS background, empirical processes and statistical learning theory, optimization, online learning
- Exposure to ML
- e.g., CS 446 Machine Learning
- Experience with RL

Coursework

- Some readings after/before class
- 3~4 graded homeworks to help digest certain material.
- about 40% of final grades (rest is project)
- Course project (work on your own)
- Baseline: reproduce theoretical analysis in existing papers
- Advanced: identify an interesting/challenging extension to the paper and explore the novel research question yourself
- Or, just work on a novel research question (must have a significant theoretical component; need to discuss with me)

Course project (cont.)

- See list of references and potential topics on website
- To be updated this semester
- You will need to submit:
- A brief proposal ($\sim 1 / 2$ page). Tentative deadline: end of Oct
- what's the topic and what papers you plan to work on
- why you choose the topic: what interest you?
- which aspect(s) you will focus on?
- Final report: clarity, precision, and brevity are greatly valued. More details to come...
- All docs should be in pdf. Final report should be prepared using LaTeX.

Contents of the course

- many important topics in RL will not be covered in depth (e.g., TD). Read more (e.g., Sutton \& Barto book) if you want to get a more comprehensive view of RL
- the other opportunity to learn what's not covered in lectures is the project, as potential topics for projects are much broader than what's covered in class.

Logistics

- Course website: http://nanjiang.cs.illinois.edu/cs542/
- logistics, links to slides/notes, and resources (e.g., textbooks to consult, related courses)
- Canvas for Q\&A and announcements: see link on website.
- Please pay attention to Canvas announcements
- Auditing students: please contact TA to be added to Canvas
- Recording: published on MediaSpace (link on website)
- Time: Wed \& Fri 2-3:15pm.
- TA: Jinglin Chen (jinglinc), Tengyang Xie (tx10)
- Office hours: TBA

Introduction to MDPs and RL

Reinforcement Learning (RL) Applications

[Levine et al'16] [Ng et al'03] [Singh et al'02]
[Lei et al'12]
[Tesauro et al'07]
[Mnih et al'15][Silver et al'16]

Shortest Path

Bellman Equation $\mathrm{V}^{*}(d)=\min \left\{3+\mathrm{V}^{*}(g), 1+\mathrm{V}^{*}(f)\right\}$

Greedy is suboptimal due to delayed effects
Need long-term planning

Shortest Path

Stochastic Shortest Path

Stochastic Shortest Path

Bellman Equation

$$
\mathrm{V}^{*}(c)=\min \left\{4+0.7 \times \mathrm{V}^{*}(d)+0.3 \times \mathrm{V}^{*}(e), 2+\mathrm{V}^{*}(e)\right\}
$$

Greedy is suboptimal due to delayed effects
Need long-term planning

Stochastic Shortest Path via trial-and-error

$$
S_{0}
$$

Stochastic Shortest Path via trial-and-error

Trajectory 1: $s_{0} \searrow c \nearrow d \rightarrow g$
Trajectory 2:

Stochastic Shortest Path via trial-and-error

Model-based RL

How many trajectories do we need
Trajectory 1: $s_{0} \searrow c \nearrow d \rightarrow g$
Trajectory 2: $s_{0} \searrow c \nearrow e \rightarrow f \nearrow g$ to compute a near-optimal policy? sample complexity

Stochastic Shortest Path via trial-and-error

How many trajectories do we need
Nontrivial! Need exploration to compute a near-optimal policy?

- Assume states \& actions are visited uniformly
- \#trajectories needed $\leq n \cdot(\# s t a t e-a c t i o n ~ p a i r s) ~$
\#samples needed to estimate
a multinomial distribution

Video game playing

objective: maximize $\mathbb{E}\left[\sum_{t=1}^{H} r_{t} \mid \pi\right]$

Video game playing

Need generalization

Value function approximation

Video game playing

Adaptive medical treatment

- State: diagnosis
- Action: treatment
- Reward: progress in recovery

A Machine Learning view of RL

slide credit: David Silver

Supervised Learning

Given $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}$, learn $f: x \mapsto y$

- Online version: for round $t=1,2, \ldots$, the learner
- observes $x^{(t)}$
- predicts $\hat{y}^{(t)}$
- receives $y^{(t)}$
- Want to maximize \# of correct predictions
- e.g., classifies if an image is about a dog, a cat, a plane, etc. (multi-class classification)
- Dataset is fixed for everyone
- "Full information setting"
- Core challenge: generalization

Contextual bandits

For round $t=1,2, \ldots$, the learner

- Given $x^{(t)}$, chooses from a set of actions $a^{(t)} \in A$
- Receives reward $r^{(t)} \sim R\left(x^{(t)}, a^{(t)}\right)$ (i.e., can be random)
- Want to maximize total reward
- You generate your own dataset $\left\{\left(x^{(t)}, a^{(t)}, r^{(t)}\right)\right\}$!
- e.g., for an image, the learner guesses a label, and is told whether correct or not (reward $=1$ if correct and 0 otherwise). Do not know what's the true label.
- e.g., for an user, the website recommends a movie, and observes whether the user likes it or not. Do not know what movies the user really want to see.
- "Partial information setting"

Contextual bandits

Contextual Bandits (cont.)

- Simplification: no x, Multi-Armed Bandits (MAB)
- Bandit is a research area by itself. we will not do a lot of bandits but may go through some material that have important implications on general RL (e.g., lower bounds)

RL

For round $t=1,2, \ldots$,

- For time step $h=1,2, \ldots, H$, the learner
- Observes $x_{h}{ }^{(t)}$
- Chooses $a_{h}{ }^{(t)}$
- Receives $r_{h}{ }^{(t)} \sim R\left(x_{h}{ }^{(t)}, a_{h}{ }^{(t)}\right)$
- Next $x_{h+1}{ }^{(t)}$ is generated as a function of $x_{h}{ }^{(t)}$ and $a_{h}{ }^{(t)}$ (or sometimes, all previous x 's and a 's within round t)
- Bandits + "Delayed rewards/consequences"
- The protocol here is for episodic RL (each t is an episode).

Why statistical RL?

Two types of scenarios in RL research

1. Solving a large planning problem using a learning approach

- e.g., AlphaGo, video game playing, simulated robotics
- Transition dynamics (Go rules) known, but too many states
- Run the simulator to collect data

2. Solving a learning problem

- e.g., adaptive medical treatment
- Transition dynamics unknown (and too many states)
- Interact with the environment to collect data

Why statistical RL?

Two types of scenarios in RL research

1. Solving a large planning problem using a learning approach
2. Solving a learning problem

- \#2 is less studied \& many challenges. Data (real-world interactions) is highest priority. Computation second.
- Even for \#1, sample complexity lower bounds computational complexity, so sample efficiency is also important.

MDP Planning

Infinite-horizon discounted MDPs

An MDP $M=(S, A, P, R, \gamma)$

- State space S.
- Action space A.

We will only consider discrete and finite spaces in this course.

- Transition function $P: S \times A \rightarrow \Delta(S) . \Delta(S)$ is the probability simplex over S, i.e., all non-negative vectors of length $|S|$ that sums up to 1
- Reward function $R: S \times A \rightarrow \mathbb{R}$. (deterministic reward function)
- Discount factor $\gamma \in[0,1)$
- The agent starts in some state s_{1}, takes action a_{1}, receives reward $r_{1} \sim R\left(s_{1}, a_{1}\right)$, transitions to $s_{2} \sim P\left(s_{1}, a_{1}\right)$, takes action a_{2}, so on so forth - the process continues indefinitely

Value and policy

- Want to take actions in a way that maximizes value (or return):

$$
\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t}\right]
$$

- This value depends on where you start and how you act
- Often assume boundedness of rewards: $r_{t} \in\left[0, R_{\max }\right]$
- What's the range of $\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t}\right]$? $\left[0, \frac{R_{\max }}{1-\gamma}\right]$
- A (deterministic) policy $\pi: S \rightarrow A$ describes how the agent acts: at state s_{t}, chooses action $a_{t}=\pi\left(s_{t}\right)$.
- More generally, the agent may choose actions randomly (π : $S \rightarrow$ $\Delta(A)$), or even in a way that varies across time steps ("nonstationary policies")
- Define

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \mid s_{1}=s, \pi\right]
$$

Bellman equation for policy evaluation

$$
\begin{aligned}
V^{\pi}(s) & =\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \mid s_{1}=s, \pi\right] \\
& =\mathbb{E}\left[r_{1}+\sum_{t=2}^{\infty} \gamma^{t-1} r_{t} \mid s_{1}=s, \pi\right] \\
& =R(s, \pi(s))+\sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\gamma \sum_{t=2}^{\infty} \gamma^{t-2} r_{t} \mid s_{1}=s, s_{2}=s^{\prime}, \pi\right] \\
& =R(s, \pi(s))+\sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\gamma \sum_{t=2}^{\infty} \gamma^{t-2} r_{t} \mid s_{2}=s^{\prime}, \pi\right] \\
& =R(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \mid s_{1}=s^{\prime}, \pi\right] \\
& =R(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right) \\
& =R(s, \pi(s))+\gamma\left\langle P(\cdot \mid s, \pi(s)), V^{\pi}(\cdot)\right\rangle
\end{aligned}
$$

Bellman equation for policy evaluation

$$
V^{\pi}(s)=R(s, \pi(s))+\gamma\left\langle P(\cdot \mid s, \pi(s)), V^{\pi}(\cdot)\right\rangle
$$

Matrix form: define

- V^{π} as the $|S| \times 1$ vector $\left[V^{\pi}(s)\right]_{s \in S}$
- R^{π} as the vector $[R(s, \pi(s))]_{s \in S}$
- P^{π} as the matrix $\left[P\left(s^{\prime} \mid s, \pi(s)\right)\right]_{s \in S, s^{\prime} \in S}$

$$
\begin{aligned}
& V^{\pi}=R^{\pi}+\gamma P^{\pi} V^{\pi} \\
& \left(I-\gamma P^{\pi}\right) V^{\pi}=R^{\pi} \\
& V^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} R^{\pi}
\end{aligned}
$$

This is always invertible. Proof?

State occupancy

$$
(1-\gamma) \cdot\left(I-\gamma P^{\pi}\right)^{-1}
$$

Each row (indexed by s) is the normalized discounted state occupancy $d^{\pi, s}$, whose (s^{\prime})-th entry is

$$
d^{\pi, s}\left(s^{\prime}\right)=(1-\gamma) \cdot \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \mathrm{~d}\left[s_{t}=s^{\prime}\right] \mid s_{1}=s, \pi\right]
$$

- $(1-\gamma)$ is the normalization factor so that the matrix is rowstochastic.
- $V^{\pi}(\mathrm{s})$ is the dot product between $d^{\pi, s} /(1-\gamma)$ and reward vector
- Can also be interpreted as the value function of indicator reward function

Optimality

- For infinite-horizon discounted MDPs, there always exists a stationary and deterministic policy that is optimal for all starting states simultaneously
- Proof: Puterman'94, Thm 6.2.7 (reference due to Shipra Agrawal)
- Let π^{*} denote this optimal policy, and $V^{*}:=V^{\pi^{*}}$
- Bellman Optimality Equation:
- Easier to work with Q-values: $Q^{*}(s, a)$, as $\pi^{\star}(s)=\arg \max _{a \in A} Q^{\star}(s, a)$

$$
Q^{\star}(s, a)=R(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)}\left[\max _{a^{\prime} \in A} Q^{\star}\left(s^{\prime}, a^{\prime}\right)\right]
$$

$$
\begin{aligned}
& \qquad V^{\star}(s)=\max _{a \in A}(\underbrace{R(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V^{\star}\left(s^{\prime}\right)\right]}) \\
& \text { - If we know } V^{*} \text {, how to get } \pi^{*} \text { ? }
\end{aligned}
$$

Homework 0

- uploaded on course website
- help understand the relationships between alternative MDP formulations
- more like readings w/ questions to think about
- no need to submit

