Fitted Q-Iteration

(most references can be found on paper list for project topics)

Generalization for value-based batch RL

- We studied using abstractions to generalize in large state spaces
- Abstractions correspond to "histogram regression" in supervised learning—the most trivial form of generalization
- Can I use XXX for value-based RL?
 - Linear predictors?
 - Kernel machines?
 - Random forests?
 - Neural nets???
 - ...
- What you really want: Reduction of RL to supervised learning.

Revisiting value iteration

- Recall the value iteration algorithm: $f_k \leftarrow \mathcal{I}f_{k-1}$
 - where $(\mathcal{T}f)(s,a) = \mathbb{E}_{r \sim R(s,a),s' \sim P(\cdot|s,a)}[r + \gamma \max_{a'} f(s',a')]$
 - i.e., $\mathcal{T}f_{k-1} = \mathbb{E}\left[r + \gamma \max_{a'} f_{k-1}(s', a') \mid s, a\right]$
- What we want: a function in the form of $\mathbb{E}[Y|X]$
 - $Y = r + \gamma \max_{a'} f_{k-1}(s', a'), \qquad X = (s, a)$
 - How to obtain E[Y|X]? Squared-loss regression!!!
- Fitted-Q Iteration [Ernst et al'05]

$$f_t = \arg\min_{f \in \mathcal{F}} \sum_{(s,a,r,s') \in D} \left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s',a') \right) \right)^2$$

- F = all functions: FQI = VI in the estimated tabular model
- F = all piece-wise const functions under abstraction ϕ : FQI = VI in the estimated abstract model

Special case: MBRL (CE) with ϕ

• Algorithm: estimate \widehat{M}_{ϕ} , and do planning

$$\widehat{R}_{\phi}(x,a) = \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} r, \quad \widehat{P}_{\phi}(x,a) = \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} \mathbf{e}_{\phi(s')}$$

- Use Value Iteration as the planning algorithm:
 - Initialize g_0 as any function in $\mathbb{R}^{|\mathcal{S}_{\phi} \times \mathcal{A}|}$
 - $g_t \leftarrow \mathcal{T}_{\widehat{M}_{\phi}} g_{t-1}$. That is, for each $x \in S_{\phi}$, $a \in A$:

$$g_{t}(x,a) = \widehat{R}_{\phi}(x,a) + \gamma \langle \widehat{P}_{\phi}(x,a), V_{g_{t-1}} \rangle$$

$$= \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} (r + \gamma \langle \mathbf{e}_{\phi(s')}, V_{g_{t-1}} \rangle)$$

$$= \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} (r + \gamma V_{g_{t-1}}(\phi(s')))$$

Rewrite in the original S

- Rewrite the algorithm so that $f_t = [g_t]_M$
- Define $\mathcal{F}^{\phi} \subset \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|}$ as the space of all functions over $S \times A$ that are piece-wise constant under ϕ with value in $[0, V_{\text{max}}]$
- Initialize f_0 as any function in F^{ϕ}
- For each $s \in S$, $a \in A$: essentially $f_t \leftarrow \mathcal{T}_{\widehat{M}'_{\phi}} f_{t-1}$

$$f_{t}(s,a) = \widehat{R}_{\phi}(\phi(s),a) + \gamma \langle \widehat{P}_{\phi}(\phi(s),a), [V_{f_{t-1}}]_{\phi} \rangle \qquad g_{t}(x,a) = \widehat{R}_{\phi}(x,a) + \gamma \langle \widehat{P}_{\phi}(x,a), V_{g_{t-1}} \rangle$$

$$= \frac{1}{|D_{\phi(s),a}|} \sum_{(r,s') \in D_{\phi(s),a}} \left(r + \gamma \langle \mathbf{e}_{\phi(s')}, [V_{f_{t-1}}]_{\phi} \rangle \right) \qquad = \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} \left(r + \gamma \langle \mathbf{e}_{\phi(s')}, V_{g_{t-1}} \rangle \right)$$

$$= \frac{1}{|D_{\phi(s),a}|} \sum_{(r,s') \in D_{\phi(s),a}} \left(r + \gamma V_{f_{t-1}}(s') \right) \qquad = \frac{1}{|D_{x,a}|} \sum_{(r,s') \in D_{x,a}} \left(r + \gamma V_{g_{t-1}}(\phi(s')) \right)$$

"Empirical Bellman update" (based on 1 data point)

$$f_t(s, a) = \frac{1}{|D_{\phi(s), a}|} \sum_{(r, s') \in D_{\phi(s), a}} \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s', a') \right)$$

Alternative interpretation of the above step

- Dataset $D = \{(s, a, r, s')\}$
- Apply emp. Bellman up. to f_{t-1} based on each data point:

$$\left\{ \left((s, a), (r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s', a')) \right) \right\}$$

- What does it mean to take average over $D_{\phi(s),a}$?
 - Recall: average minimizes mean squared error (MSE)
 - *Projection* onto F^{ϕ} ! (think of functions over D)

$$f_t = \arg\min_{f \in \mathcal{F}^{\phi}} \sum_{(s,a,r,s') \in D} \left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s',a') \right) \right)^2$$

• ... which is, solving a SL regression problem with histogram regression F^ϕ

Fitted Q-Iteration (FQI):
$$f_t = \arg\min_{f \in \mathcal{F}} \sum_{(s,a,r,s') \in D} \left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s',a') \right) \right)^2$$
 [Ernst et al'05]; see also [Gordon'95]

We simplified a "regression algorithm" to its corresponding function space F

- Empirical Risk Minimization (ERM); assume optimization is exact; does not consider regularization, etc.
- Will also assume finite (but exponentially large) F
 - continuous spaces are often handled by discretization in SLT (e.g., growth function, covering number)
 - methods like regression trees have dynamic function spaces (and often need SRM); not accommodated
- A minimal but (hopefully) insightful simplification of supervised learning

Fitted Q-Iteration (FQI):
$$f_t = \arg\min_{f \in \mathcal{F}} \sum_{(s,a,r,s') \in D} \left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s',a') \right) \right)^2$$
 [Ernst et al'05]; see also [Gordon'95]

Asynchronous update + stochastic approximation?

- Assume parameterized & differentiable function: $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$
- Online regression: randomly pick a data point and do a stochastic gradient update:
 Treat as constant; don't pass gradient

$$\theta \leftarrow \theta - \frac{\alpha}{2} \cdot \nabla_{\theta} \left(f_{\theta}(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{\theta}(s', a') \right) \right)^{2}$$

$$= \theta - \alpha \left(f_{\theta}(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{\theta}(s', a') \right) \right) \nabla_{\theta} f_{\theta}(s, a)$$

- If f_{θ} is the tabular function, it's (tabular) Q-learning
- If f_{θ} is a neural net, it's (almost) DQN (Mnih et al.'15)
 - Using a target network is even more similar to FQI

Fitted Q-Iteration (FQI):
$$f_t = \arg\min_{f \in \mathcal{F}} \sum_{(s,a,r,s') \in D} \left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s',a') \right) \right)^2$$
 [Ernst et al'05]; see also [Gordon'95]

The argmin step plays two roles:

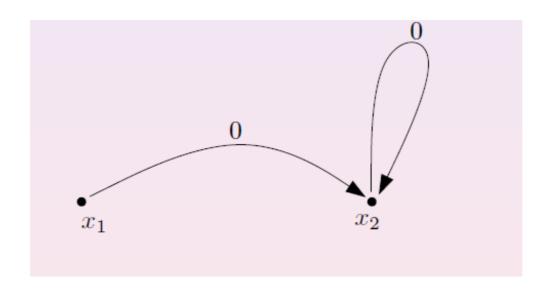
- 1. Denoise the emp update $r + \gamma V_f(s')$ to $(\mathcal{I}f)(s, a)$ (w/ inf data)
 - This happens even in tabular setting
- 2. $\Im f$ may not have a succinct representation => find the closest approximation in F (i.e., projection)
 - Denote \prod_F as the projection. Dependence on weights over state-action pairs omitted—determined by data distribution
 - With infinite data, FQI becomes: $f_t \leftarrow \prod_F \mathcal{I} f_{t-1}$

Convergence and Stability

- With infinite data, Q^* is a fixed point (as long as $Q^* \in F$)
 - $Q^* \in F$ is called $(Q^* -)$ "realizability"
- CE w/ Q*-irrelevant ϕ is a special case of FQI—convergence guaranteed
- Doesn't hold in general: FQI may diverge under Q* ∈ F,
 even with
 - Infinite data
 - Fully exploratory data
 - Linear function class F
 - MDP has no actions (just policy evaluation)

2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x_1, x_2 , 1-d features for the two states: $f_{x_1} = 1, f_{x_2} = 2$. Linear Function approximation with $\tilde{V}_{\theta}(x) = \theta f_x$.



credit: course notes from Shipra Agrawal

$$\theta_{k} := \arg\min_{\theta} \frac{1}{2} (\theta - \operatorname{target}_{1})^{2} + (2\theta - \operatorname{target}_{2})^{2}$$

$$= \arg\min_{\theta} \frac{1}{2} (\theta - \gamma \theta^{k-1} f_{x_{2}})^{2} + (2\theta - \gamma \theta^{k-1} f_{x_{2}})^{2}$$

$$= \arg\min_{\theta} \frac{1}{2} (\theta - \gamma 2 \theta^{k-1})^{2} + (2\theta - \gamma 2 \theta^{k-1})^{2}$$

$$(\theta - \gamma 2 \theta^{k-1}) + 2(2\theta - \gamma 2 \theta^{k-1}) = 0 \Rightarrow 5\theta = 6\gamma \theta^{k-1}$$

$$\theta_{k} = \frac{6}{5} \gamma \theta_{k-1}$$

This diverges if $\gamma \geq 5/6$.

A simple example (finite horizon, $\gamma=1$)

start 1 2 3 4 4 9 10

FQI Data: $(\textcircled{0}, 1, end), ..., (\textcircled{0}, 0, end) \Rightarrow$ 0.501

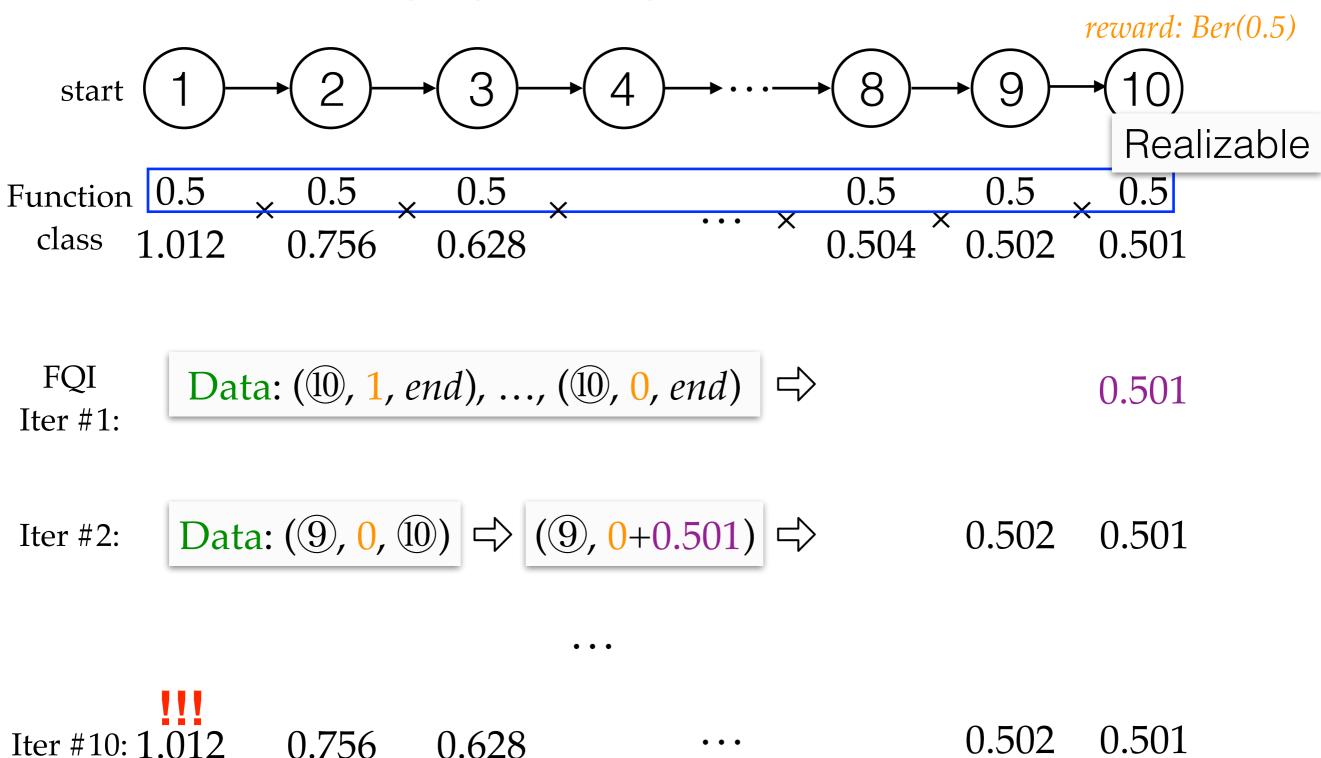
Iter #2: Data: $(9, 0, 0) \Leftrightarrow (9, 0+0.501) \Leftrightarrow 0.501 0.501$

• • •

Iter #10: 0.501 0.501 0.501 ... 0.501 0.501 0.501

• Dataset $D = \{(s, r, s')\}$ looks like (action omitted): $\{(1), 0, 2), (2), (2), 0, 3), ..., (10, 1, end), ..., (10, 0, end)\}$

How things go wrong (w/ restricted class)



Example given in Dann et al'18

Intuition for the instability

- Standard VI: $f_t \leftarrow \mathcal{T}f_{k-1}$
- FQI keeps things tractable by: $f_t \leftarrow \Pi_{\mathscr{F}}(\mathscr{T}f_{k-1})$
 - \prod_F can destroy contraction of \mathscr{T} !
 - Preserved only in special cases (e.g., Q*-irrelevant ϕ)
- A sufficient condition that fixes the issue

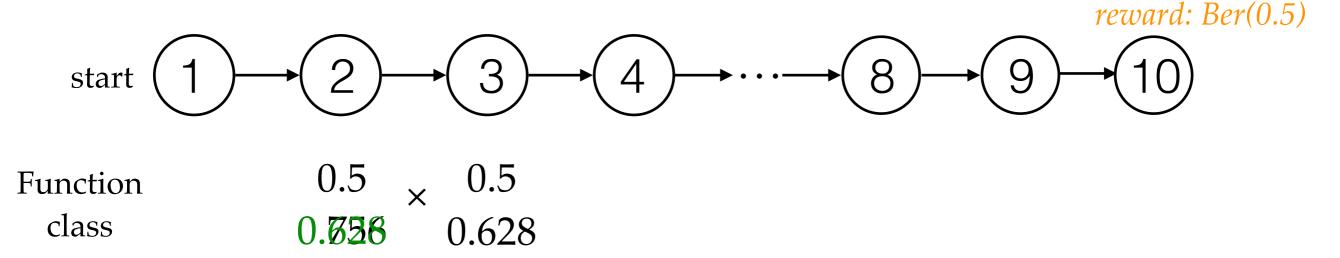
Bellman completeness (closure)

$$\mathcal{I}f \in \mathcal{F}, \forall f \in \mathcal{F}$$

*introduced by Szepesvari & Munos [2005]

- whatever f_{k-1} is used, regression is always well-specified
- Implies realizability for finite class (why?)
- For piecewise const F, completeness = bisimulation (hw)
- Not necessarily converge, but will get close to a good solution (under additional data assumptions)

How completeness fixes the issue



More generally: issue goes away if the regression problem

$$\left\{ \left((s, a), (r + \gamma \max_{a' \in \mathcal{A}} f_{t-1}(s', a')) \right) \right\}$$

is realizable with F, for any $f_{t-1} \in F$

- In finite-horizon setting: the richer function class you use at a lower level, the more difficult to satisfy realizability at higher level
- In discounted setting: F closed under Bellman update—adding functions can hurt representation

Alternative approach

- FQI is an iterative alg in its nature
 - not optimizing a fixed objective function!
 - objective changes as current f changes
- Alternative: minimize $||f \mathcal{I}f||$ over $f \in F$
 - Is it equivalent to minimizing:

$$\mathbb{E}_{(s,a)\sim\mu}\left[\left(f(s,a)-(r+\gamma\max_{a'}f(s',a'))\right)^{2}\right]$$

$$r\sim R(s,a)$$

$$s'\sim P(s,a)$$
(omitted in the rest of slides)

Bellman error minimization

$$\mathbb{E}_{(s,a)\sim\mu} \left[\left(f(s,a) - (r + \gamma \max_{a'} f(s',a')) \right)^2 \right]$$

$$= \mathbb{E}_{(s,a)\sim\mu} \left[\left(f(s,a) - (\mathcal{T}f)(s,a) \right)^2 \right] + \mathbb{E}_{(s,a)\sim\mu} \left[\left((\mathcal{T}f)(s,a) - (r + \gamma \max_{a'} f(s',a')) \right)^2 \right]$$

This part is what we want: $||f - \mathcal{I}f||$, with a weighted 2-norm defined w/ ν

This part is annoying!

- Prefer "flat" f
- Q* is not necessarily flat!
- 0 for deterministic transitions. Issue is only serious when env highly stochastic

Unbiased estimate "
"double sampling"

Workaround #1

• For $(s, a) \sim \mu$, if we can obtain **2** i.i.d. copies of (r, s') (copy A & B):

$$\left(f(s,a) - \left(r_A + \gamma \max_{a' \in \mathcal{A}} f(s'_A, a')\right)\right) \left(f(s,a) - \left(r_B + \gamma \max_{a' \in \mathcal{A}} f(s'_B, a')\right)\right)$$

Only doable in simulators w/ resets...

Bellman error minimization

$$\mathbb{E}_{(s,a)\sim\mu} \left[\left(f(s,a) - (r + \gamma \max_{a'} f(s',a')) \right)^2 \right]$$

$$= \mathbb{E}_{(s,a)\sim\mu} \left[\left(f(s,a) - (\mathcal{T}f)(s,a) \right)^2 \right] + \mathbb{E}_{(s,a)\sim\mu} \left[\left((\mathcal{T}f)(s,a) - (r + \gamma \max_{a'} f(s',a')) \right)^2 \right]$$

This part is what we want: $||f - \mathcal{I}f||$, with a weighted 2-norm defined w/ ν

This part is annoying!

- Prefer "flat" f
- Q* is not necessarily flat!
- 0 for deterministic transitions. Issue is only serious when env highly stochastic

Workaround #2

- Estimate the 2nd part, and subtract it from LHS
- Antos et al'08:

$$\mathbb{E}_{(s,a)\sim\mu}\left[\left(f(s,a)-\left(r+\gamma\max_{a'\in\mathcal{A}}f(s',a')\right)\right)^{2}\right]-\min_{g\in\mathcal{G}}\mathbb{E}_{(s,a)\sim\mu}\left[\left(g(s,a)-\left(r+\gamma\max_{a'\in\mathcal{A}}f(s',a')\right)\right)^{2}\right]$$

Bellman error minimization

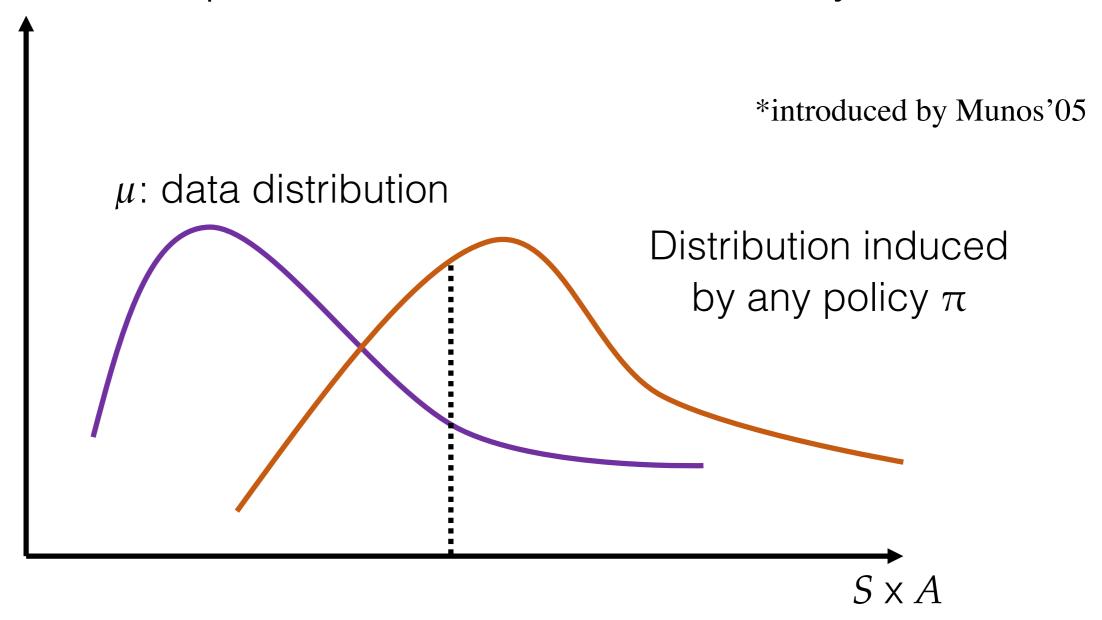
$$\arg\min_{f \in \mathcal{F}} \max_{g \in \mathcal{G}} \left(\mathbb{E}_{(s,a) \sim \mu} \left[\left(f(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f(s',a') \right) \right)^2 - \left(g(s,a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f(s',a') \right) \right)^2 \right] \right)$$

- Fix any f, the first squared error is constant; second square is a regression problem w/ Bayes optimal being $\mathcal{I}f$
- So, if G is rich enough to contain $\mathcal{I}f$ for all f, this works!
 - and w/ a consistent optimization objective, unlike FQI
- If *G* is not rich enough, may under-estimate the Bellman error of some *f* (subtracting too much)
- FQI: When G=F, this is just Bellman completeness again!

One last assumption: data

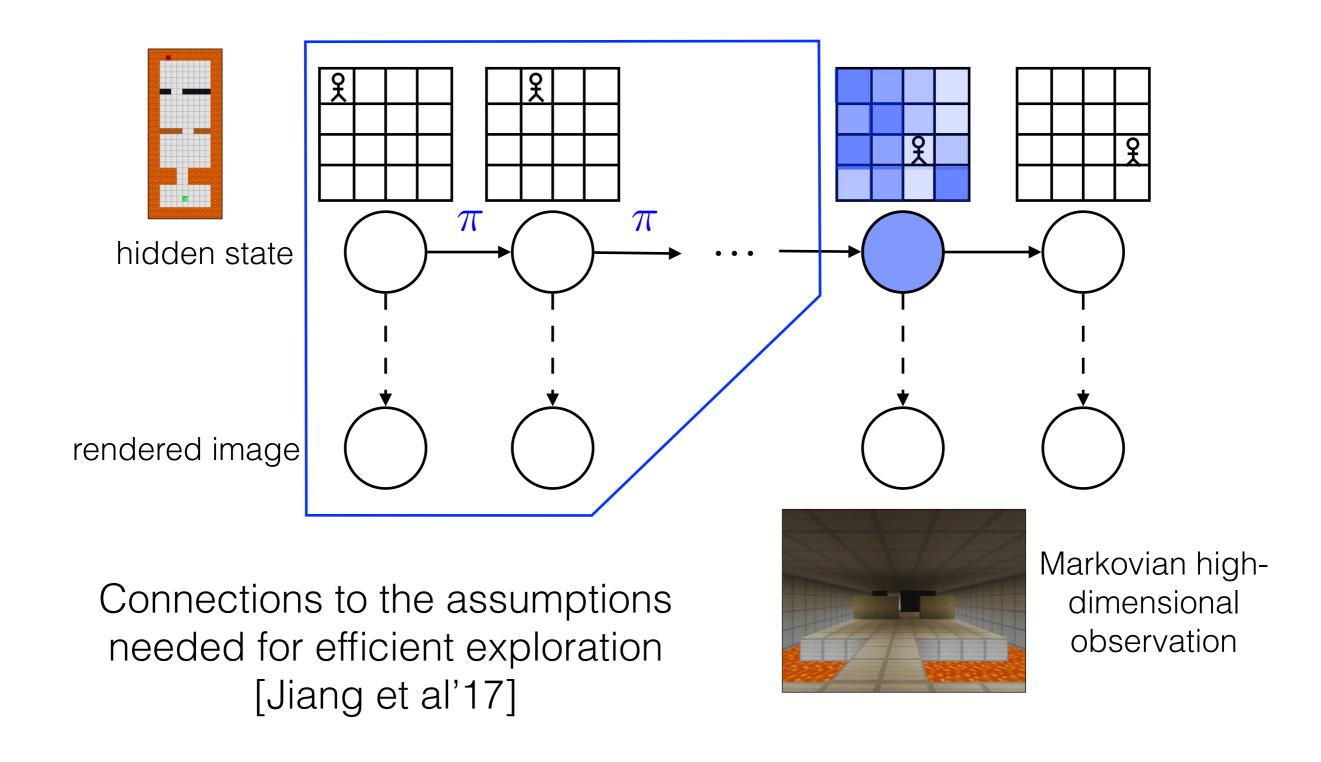
- Recall that data needs to be exploratory for batch RL
- What does it actually mean?
 - tabular: relatively uniform over state space
 - abstraction: relatively uniform over abstract state space
 - large/continuous state space: uniform? in what measure??

Assumption on data: "Concentrability"



- Let C be a uniform upper bound on the density ratio
- Assumption: C is small (= allow polynomial dependence on C)
- Previous exponential lower bound is "explained away" by an exponentially large C

Concentrability: when is it small?



Remainder of this part

Prove the $poly(H, \log |F|, C)$ result for FQI

Remainder of this part

Prove the $poly(H, \log |F|, C)$ result for FQI

	Data	Function approximation
AVI	$\max_{\pi} \ d^{\pi}/d^{D}\ _{\infty} \le C$	$\mathcal{T}f\in\mathcal{F},orall f\in\mathcal{F}$ [Munos & Szepesvari'08]
API		$\mathcal{T}^{\pi}f\in\mathcal{F},\;orall f\in\mathcal{F},\pi\in\Pi$ [Antos et al '08]

- Assumption so far: data is exploratory (e.g., $\max_{\pi} \|d^{\pi}/\mu\|_{\infty} \leq C$)
- Challenge: real-world data often lacks exploration!
 - Data may not contain all bad behaviors
 - Alg may over-estimate their performance

Data with insufficient coverage

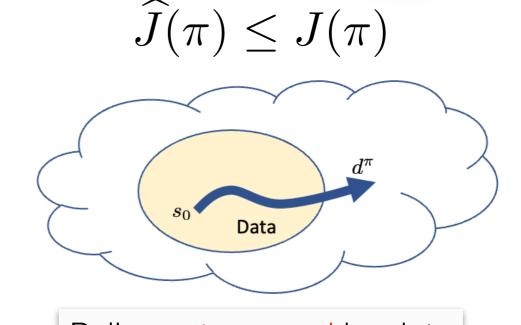
- Policy optimization: $\arg \max_{\pi \in \Pi} J(\pi) := Q^{\pi}(s_0, \pi)$
 - Q^{π} : value function; s_0 : initial state; Π : policy class
- Considerations in estimating $\widehat{J}(\pi)$?

$$\arg\max_{\pi\in\Pi}\widehat{J}(\pi)$$

Pessimism in face of uncertainty

$$\widehat{J}(\pi) pprox J(\pi)$$

$$\widehat{J}(\pi) pprox J(\pi)$$
Policy covered by data

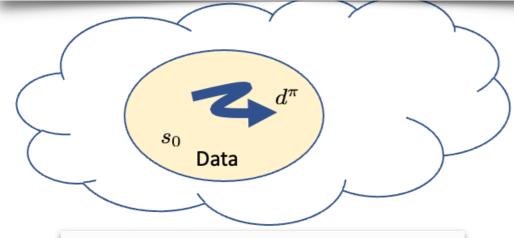


Handle two cases simultaneously

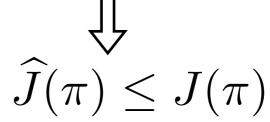
- Consider $\mathcal{F}^\pi_\epsilon := \{f \in \mathcal{F} : \|f \mathcal{T}^\pi f\|_{2,\mu} \le \epsilon\}$ "Confidence set"/"Version space"
 - small $||f \mathcal{T}^{\pi} f||_{2,\mu}$ implies $f(s_0, \pi) \approx J(\pi) = Q^{\pi}(s_0, \pi)$ if μ covers d^{π}
 - can estimate $||f \mathcal{T}^{\pi} f||_{2,\mu}$ (the "minimax" estimator) under "Bellman-completeness" $\mathcal{T}^{\pi} f \in \mathcal{F}, \forall f \in \mathcal{F}$
- Key observation: Q^{π} is in the set $(Q^{\pi} \mathcal{T}^{\pi}Q^{\pi} \equiv 0)$
- Pessimistic policy evaluation

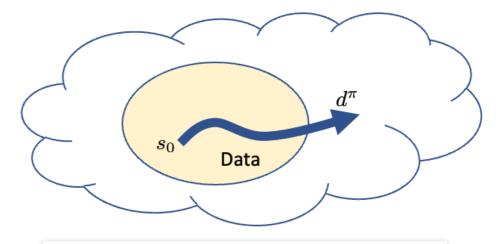
$$\widehat{J}(\pi) := \min_{f \in \mathscr{F}_{\epsilon}^{\pi}} f(s_0, \pi) \le Q^{\pi}(s_0, \pi) = J(\pi)$$

All members of \mathscr{F}^π_ϵ have small $\|f-\mathscr{T}^\pi f\|_{2,\mu}$, so $\widehat{J}(\pi)\approx J(\pi)$ for covered π



Policy covered by data





Policy not covered by data

	Data	Function approximation
AVI	$\max \ d^{\pi}/d^{D}\ _{\infty} < C$	$\mathcal{T}f\in\mathcal{F}, orall f\in\mathcal{F}$ [Munos & Szepesvari'08]
API		$\mathcal{T}^{\pi}f\in\mathcal{F},\;orall f\in\mathcal{F},\pi\in\Pi$ [Antos et al '08]
Pessimism	$ d^{\pi^*}/d^D _{\infty} \le C$	$\mathcal{T}^{\pi}f\in\mathcal{F},\;orall f\in\mathcal{F},\pi\in\Pi$ [Xie et al

- . Guarantee: $\widehat{\pi} = \arg\min_{\pi \in \Pi} \widehat{J}(\pi)$ competes with any covered policy $\pi_{\mathrm{ref}} \in \Pi$
 - $J(\widehat{\pi}) \ge \widehat{J}(\widehat{\pi}) \ge \widehat{J}(\pi_{\text{ref}}) \approx J(\pi_{\text{ref}})$
 - Near-optimality follows if π^* is covered
- Alternative: pointwise pessimism (construct $\widehat{Q}^{\pi}(s,a) \leq Q^{\pi}(s,a) \ \forall s,a$)
 - Insert negative bonus in Bellman backup [Jin et al'21]
 - Density estimation + pessimistic in low-density area [Liu et al'20]