Fitted Q-lteration

(most references can be found
on paper list for project topics)



Generalization for value-based batch RL

We studied using abstractions to generalize in large state spaces

Abstractions correspond to “histogram regression” in supervised
learning—the most trivial form of generalization

Can | use XXX for value-based RL?
* Linear predictors?

 Kernel machines?

 Random forests?

e Neural nets???

What you really want: Reduction of RL to supervised learning.



Revisiting value iteration

* Recall the value iteration algorithm: f, « I, _,

o« Where (Tf)(s,a) = E, ggs.a)5~p(lsal” + 7 maxf(s',a’)]
a
e 1.6, Tf_ = [E[r + ymax f,_,(s’,a’) | s, a]
a/

 What we want: a function in the form of E[Y | X]
. Y=r+ymaxf,_,(s,a’), X=(s,a)

a

* How to obtain E[Y|X]? Squared-loss regression!!!

* Fitted-Q lteration [Ernst et al’05]

2
fi = argmin > (f(s,a) - <"f + 7 max ft—l(S’,a’)»

(s,a,r,s8")ED
« F = all functions: FQI = VI in the estimated tabular model

* F = all piece-wise const functions under abstraction d): FQI = VI in the
estimated abstract model



Special case: MBRL (CE) with ¢

* Algorithm: estimate a7, , and do planning
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R y(x,a) = D, | z(r,s’)er,a r, P ylx,a)= D, | z(r,s’)er,a Cos)

* Use Value lteration as the planning algorithm:
* Initialize go as any function in RIS

* gt Tg;,9t-1. That is, for each x € Sy, a € A:

g:(z,a) = Ry(z,a) + v(Py(x,a), Vy_,)
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Rewrite In the original S

* Rewrite the algorithm so that f; = [¢i]m

« Define F¢ c RIS*Al as the space of all functions over SxA that
are piece-wise constant under ¢ with value in [0, Vinax]

* Initialize fy as any function in F?

* Foreachse 5,ae A: essentially f; «+ TAg’bft_l
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“Empirical Bellman update”
(based on 1 data point)



ft(saa) — : Z <T+/yglg§ftl(8/7a/))

‘ng(s),a’ (r,s’)€D¢(s),a

Alternative interpretation of the above step
e DatasetD={(s, a,7 ")}

* Apply emp. Bellman up. to f+1 based on each data point:

{((0). 0+ 7mag s (50)) |
* What does it mean to take average over Dg(s)q 7

* Recall: average minimizes mean squared error (MSE)
* Projection onto F?! (think of functions over D)

2
fi = arg fré% Z (f(5> a) — (T " Teex fea (s’ a’)))

(s,a,r,s’")ED

* ... whichis, solving a SL regression problem with histogram
regression F?



Fitted Q-lteration (FQI): f, =argmin =~ $° (f(sva) B (”Wéﬁf“(s/’“/)»z

[Ernst et al’'05]; see also [Gordon’95] Jer (s,a,r,s’)ED

We simplitied a “regression algorithm” to its corresponding function
space F

 Empirical Risk Minimization (ERM); assume optimization is exact;
does not consider regularization, etc.

* Will also assume finite (but exponentially large) F

e continuous spaces are often handled by discretization in SLT
(e.g., growth function, covering number)

* methods like regression trees have dynamic function spaces
(and often need SRM); not accommodated

* A minimal but (hopefully) insightful simplification of supervised
learning



Fitted Q-lteration (FQI): f, =argmin =~ $° (f(sva) B (”Wéﬁf“(s/’“/)»z

[Ernst et al’'05]; see also [Gordon’95] Jer (s,a,r,s’)ED

Asynchronous update + stochastic approximation?
* Assume parameterized & differentiable function: F = {fy : 8 € 6}

* Online regression: randomly pick a data point and do a stochastic

gradient update: ,
Treat as constant; don’t pass gradient

#‘ 2
0 «— 0 — % - Vo (f@(S,CL) — <T+’Y£r/lg§f9(8’,a’)>>

R (fg(s,a) - <r —I—’ymaxfg(s’,a'))> Vofs(s,a)

a’ €A
* If fo is the tabular function, it’s (tabular) Q-learning

* If fo is a neural net, it's (almost) DQN (Mnih et al.’15)
e Using a target network is even more similar to FQI



Fitted Q-lteration (FQI): ¢ = are min s.a) — [+~ max f,_i(s'.a’ :
[Ernst et al’05]; see also [Gordon’95] d gféf (S,a%;,)GD <f( ) ( +rya'€“4f ( ))>

The argmin step plays two roles:

1. Denoise the emp update r + yV¢(s’) to (T f)(s, a) (w/ inf data)

* This happens even in tabular setting
2. 7 f may not have a succinct representation => find the closest
approximation in F (i.e., projection)

» Denote [[ as the projection. Dependence on weights over state-
action pairs omitted—determined by data distribution

« With infinite data, FQI becomes: fi <[]y 7 fi1
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Convergence and Stability

* With infinite data, Q* is a fixed point (as long as Q* € F)
* Q*e Fis called (Q*-)“realizability”

* CE w/ Q*irrelevant ¢ is a special case of FQl—convergence
guaranteed

* Doesn’t hold in general: FQI may diverge under Q* € F,
even with

* [nfinite data
* Fully exploratory data

* [inear function class F
« MDP has no actions (just policy evaluation)



11

2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x1,x2, 1-d features for the two states: f,, =1, fr, = 2. Linear Function approximation

with Vy(z) = 6f,.

This diverges if v > 5/6.

0
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0, = arg mein 5(9 _ target1)2 + (260 — target2)2

1
= arg mein 5(9 — 79k_1fm2)2 —+ (26 — 79k_1fm2)2

= arg mein %(9 — 720F 12 (20 — y20F71)?

(0 — 720%1) + 2(20 — 4260%1) = 0 = 50 = 60"

6

Or = 579/%:—1

credit; course notes
from Shipra Agrawal



A simple example (finite horizon, y=1)

N0SOSOS OSSOSO ®

FQL  Data: (00, 1, end), ..., (10, 0, end) = 0.501
Iter #1:
lter#2:  Data: (), 0, ©) = (@), 0+0.501) = 0501 0.501
Iter #10: 0.501 0.501 0501 0501 ... 0501 0501 0.501

e Dataset D = {(s, 1, s")} looks like (action omitted):

(@, 0,2),(@,0,0), ..., (0, 1, end), ..., (19, 0, end)}
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ow things go wrong (w/ restricted class)

MCACRC A O CaCR T

Realizable

Function < < < S s 0. 5|

class j_.012 0.756 0.628 0.504 0.502 0.501

FQI Data: (10, 1, end), ..., (10, 0, end) = 0.501

Iter #1:

Iter #2:  Data: (9), 0, 10) = (©, 0+0.501) = 0.502 0.501

1
Iter #10: 1.012  0.756  0.628 0.502 0.501

s Example given in Dann et al'18
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Intuition for the instability

* Standard VI. f, « TF,_;
 FQI keeps things tractable by: £, « Mg (Tf,_;)

[ [z can destroy contraction of !

Preserved only in special cases (e.g., Q*-irrelevant ¢)

e A sufficient condition that fixes the issue

Bellman completeness (closure)

*introduced by Szepesvari

chf E !G/\;, Vf E 9 & Munos [2005]

whatever f,_, is used, regression is always well-specified
mplies realizability for finite class (why?)
-or piecewise const F, completeness = bisimulation (hw)

Not necessarily converge, but will get close to a good solution
(under additional data assumptions)



ow completeness fixes the issue

@@@@ ORNORE

Function v

class OEBS 0.628

* More generally: issue goes away If the regression problem

{ ((s, a), (r+ Y max fr—1(s', a'))) }

s realizable with F, for any fri € F

* In finite-horizon setting: the richer tunction class you use at a lower
evel, the more difficult to satisty realizability at higher level

* |In discounted setting: F closed under Bellman update—adding
functions can hurt representation

15
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Alternative approach

 FQIl is an iterative alg in its nature
* not optimizing a fixed objective function!

* objective changes as current f changes

 Alternative: minimize || f- 7 f|| over fe F

* |s it equivalent to minimizing:

2
IEf’(s,a,)rv,u [(f(57 CL) o (7“ + ymgxf(s’, CL/))) ]
r~R(s,a) !
s’'~P(s,a)
(omitted in the
rest of slides)
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E(S>a)NH

— E(s,a)w,u

Bellman error minimization

(5.0 = (gm0

(75,0 = (TN )] + By | (75 = e 5, )

This part is what we want: This part is annoying!

| -7 f]|, with a weighted
2-norm defined w/ v

Workaround #1

Prefer “flat” f

Q* is not necessarily flat!

O for deterministic transitions. Issue is
only serious when env highly stochastic
Unbiased estimate

\double sampling”

* For (s, a)~u, if we camgbtain 2 i.i.d. copies of (r, s") (copy A & B):

(760 = (ra+ymax ) ) (5.0 = (ra+ 7 ma S5, )

* Only doable in simulators w/ resets...




Bellman error minimization

i 2
E(s,a)wu (f(37 CL) o (T + ’}/H%LE}Xf(S/, CL/))) ]

= Eo o |(£(5,0) = (T)(5,0))| + Egaaym [((T ls,a) = (r +ymax f(s, a’”ﬂ

This part is what we want: This part is annoying!
| f-T7f|, with a weighted * Prefer “flat” f
2-norm defined w/ v * Q*is not necessarily flat!

e (O for deterministic transitions. Issue is
only serious when env highly stochastic

Workaround #2
e Estimate the 2nd part, and subtract it from LHS
* Antos et al'08:

, 2
E(s,a)~u [(f(s,a) — (T—i—vgﬁlgﬁf(s’,a’))) ] _I;leigE(S’a)N“ [(9(8,@ — (T+7£{1§§f(5’,a’)>> ]

18



Bellman error minimization

9 2
arg min max (E<S,W [<f (8,0) - ( et <>)> - <g<8’“> - ( e <)>) D

* Fix any f, the first squared error is constant; second square is a
regression problem w/ Bayes optimal being 7 f

« S0, if Gisrich enough to contain 7 f for all £, this works!

* and w/ a consistent optimization objective, unlike FQI

* It G is not rich enough, may under-estimate the Bellman error of
some f (subtracting too much)

* FQI: When G=F, this is just Bellman completeness again!

19
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One last assumption: data

* Recall that data needs to be exploratory for batch RL
 What does it actually mean?

e tabular: relatively uniform over state space

e abstraction: relatively unitorm over abstract state space

* |arge/continuous state space: uniform? in what measure??
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Assumption on data: “Concentrability”

*Introduced by Munos’05

u: data distribution

Distribution induced
by any policy

SxXA

* Let C be a uniform upper bound on the density ratio

* Assumption: Cis small (= allow polynomial dependence on C)

* Previous exponential lower bound is “explained away” by an
exponentially large C
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Concentrability: when is it small?

- ; .
Sisaase T T
hidden state Q—>Q—» _w
| | | |
| | | |
rendered image O O O O

Markovian high-
dimensional
observation

Connections to the assumptions
needed for efficient exploration
[Jiang et al’17]
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Remainder of this part

Prove the poly(H, log|F|, C) result for FQI
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Remainder of this part

Prove the poly(H, log|F|, C) result for FQI
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Data Function approximation
AV'T """""""" F vr[M&
D - - Szepesvari’08]
""""""""""""""""""" m;_)JXHdﬂ-/d ||OQ S C fjf[Antosetal
API T feF, Vfe F,rell 08]

. Assumption so far: data is exploratory (e.qg., max||d™ / p||co < C)

* Challenge: real-world data often lacks exploration!
* Data may not contain all bad behaviors
* Alg may over-estimate their performance

e

How to understand a driving behavior
IS unsafe, if all data are safe?
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Data with insufficient coverage

. Policy optimization: arg max J(m) == Q" (s0,7)

* (O™ value function; so: initial state; II: policy class

AN

» Considerations in estimating J(m) ?

arg max J ()
WEH . " ' '
Pessimism in face of uncertainty

N AN

J(m) = J(m) J(m) < J(m)

d’n‘
So
Data

Policy covered by data Policy not covered by data




Handle two cases simultaneously

» Consider #7 :={fe F : |If-I"fll,, < e} “Confidence set’/*Version space”
» small ||f = T7fll,, implies f(sy, ) = J(x) = Q"(sy, @) If u covers d”
» can estimate [|f— I 7f|l,, (the "minimax” estimator) under
‘Bellman-completeness” 9% e % ,Vfe F
e Key observation: Q7 is in the set (Q" — I"0" = 0)
* Pessimistic policy evaluation
J () := min f(s, ) < Q" (59, 7) = J(x)

. v
AN

All members of 7 have small
Ilf — 97”f||2,”, SO j\(ﬂ') ~ J(x) for covered 7 J(TF) S J(ﬂ-)

dﬂ'
So
Data

27 Policy covered by data Policy not covered by data




Data Function approximation

..................................................................................................................................................................................................................................

AV TIEFVIeF sl
.................................... | max[|d™ /8P oo € O fr e
APl T”fef Ve F,mell hmers

..................................................................................................................................................................................................................................

[Xie et al

Pessimism . [|d™" /dP || < C ;T”f c F,VfeF,mell Xegt

. Guarantee: 7 = argmin J (x) competes with any covered policy z, € I1
nell

e J(B) 2 T(B) 2 T (Treg) R I(Tyep)
* Near-optimality follows if #* is covered
. Alternative: pointwise pessimism (construct Q" (s,a) < Q™(s,a) Vs, a)
* |nsert negative bonus in Bellman backup [Jin et al’21]
* Density estimation + pessimistic in low-density area [Liu et al’20]
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