Batch Value-Function Tournament

Nan Jiang



ML Pipelines

Training Validation Testing (Evaluation)
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Supervised difficult éeasy: cross/holdouté . .
Leaming  (optimization) ~ validation ~ ©2°YJuSt-testi

more difficult most difficult
Offine RL - (hyperparam | even more difficult | (validation reduces to
 sensitivity) evaluation)




Reduction to OPE?

* Training algorithms produce 11, 12, 73,.... Choose (apprx) best one
on validation data

* Natural solution: use OPE (off-policy evaluation) to estimate J(r;)
 OPE approaches

e Importance sampling [Precup et al’00, Jiang & Li’16, etc]: exponential
variance

 ADP (e.qg., Fitted-Q [Paine et a’20]) / ALP [Liu et al’18, Nachum et al’19, Uehara
et al’20, etc]: require additional function approximation

 Elephant in the room: to tune hyperparameters you need to tune
hyperparameters!

* Analog of SL holdout-validation? i.e., hyperparameter-free?



Reformulation: Value-function Selection

Training algs often produce more than policies... so, select value functions?

Simple(?) Problem

e Run your fav training alg with different neural architectures

* (Get candidate value functions fi, f, ...

e Select the best approx of Q* using a “small” holdout dataset?
e “small” = no |S| or exponential-in-horizon
e & no further function approximation!

What was known
e nothing: can’t even handle 2 functions
e hardness conjecture [Chen & Jiang, ICML-19]

e Qur solution: BVFT [Xie & Jiang, ICML-21] with deep RL implementation [Zhang
& Jiang, NeurlPS-21]



Markov Decision Process (MDP)

Fort=0,1,2, ..., the agent

* observes states;e S (very large) transition dynamics

* chooses actiona;e A (finite)

* receives reward r;= R(s;, a;)

Policy m: S — A

Expected return J(m) := (1 — )
* assume initial state sp wlog
Key solution concepts

P: SxA — A(S)

reward function

R: SxA —[0,1]

L[> 1—0 7' Tt]50; 7]

e Bellmaneqg: Q@ =TQ*, Q" =T"Q"
where (7 f)(s,a) = R(s,a) + YEg ~p(s,q) maxy f(s',a"))

» Occupancy: d'(s,a)= (1 -y Y~ ¥'Pls,=s,a,= a| x]



Value-tunction selection in large MDPs

Dataset D ={(s, a, r, s"))
* (s, a) ~dP (“data distribution”), r = R(s, a), s ~ P(- | s, a)
value

Candidate functions: fi, A

Suppose one of them is Q... how to f

identify it? Nﬁ
Minimal requirement on the algorithm

* Consistent (eo data => Q* identified)

* On finite data, never estimate anything whose variance SxA
grows w/ |S] or exp(H) (H is effective horizon 1/(1-y))

S

* can have poly(1/¢) dependence
Hardness results [Wang et al’20, Zanette’21, Foster et al’21]



Challenge in value-function selection

e Seems possible to verify Q* = T Q™ on data?

e Problem: f — T f is unlearnable [Sutton & Barto’18]

* Nalve "1-sample” estimator is biased

~

4, gD (f(S, CL) — T — 7 MaXy f(Sla a/))Q

(f = T1P| HEap [Vojaalr +7maxy (s',a)]

= ||f = Tfll5.4p, Bayes-error-like term
what we want depending on f

— 4JCZD

* unbiased estimation requires “double sampling” [Baird’95] Or
helper class G 2 T f [Antos’08] (“Bellman-completeness”)



Seemingly Impossible?

Validation is just training w/o optimization difficulties!
Open problem in offline RL (now resolved)
Is poly-sample learning possible w/
* Exploratory data

* Fs.t. Q" € F (realizability)

All existing algorithms require stronger assumptions on (e.g.,
Bellman-completeness)

|s a positive result possible?



Projected Bellman error ||f — g T f|l2.4p

o Estimation: IIgT f = ERM of {(s,a) — r+vymax, f(s',a’)}inG

* | G needs to have bounded complexity
.« Consistent, i.e., ||f —HgT flloap =0 & f = Q7 if
.| Q" €G

*| G is piecewise constant|(induced by some partitioning) [Gordon95]

« Reason: 1157 is contraction for piecewise-constant G

* Related to “Q*-irrelevant abstractions” [Li et al’06]

* Where to find such a magical G7
* create it “out of nothing”!



The ideal choice of G

* Does a low-complexity G always exist?

* YES! Just partition SxA according to O*
* (8xA).groupBy { (s, a) =>round(Q*(s,a)/ ¢€) }
e #partitions: O(1/¢) (e is discretization error)

value
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same block SxA

* Chicken-and-egg: only if | knew Q...
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Pairwise Comparison

* Recall that problem is still nontrivial even when |F|=2!
* One fi, f> of is Q*: how to find out from data?

* Partition SxA according to both functions in F simultaneously!
* size of ¢: O(1/¢2) — affordable!!!

. Fixed point of 7" will be

close to Q* => choose ’Vw(“/‘(*
the one w/ lower IIf — T2 f| |
* Extend to large F? TL/— N fz.
* Nalve: generate partition ‘_;: [ f1
of size O(1/") X ij R[] /zJ

same block &S)”’A |
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Batch Value-Function Tournament [xie & Jiang’20b]

----------
-
L d

7\1 ‘ partition created
Algorithm: arg min max || f — , ,
. gorit gfef ok Hf b s fH2,D out of fand f

* Inspired by Scheffé tournament & tournament algorithms for
model selection in RL [Hallak et al’13, Jiang et al’15]

* Concern: not every o is "good” (i.e., Q*irrelevant)
* For f=Q%: always tested on good ¢ => small error for all f’

* For bad f: tested on a good ¢ when "= Q* => large max error

Theorem: when F is realizable, the sample complexity of BVFT

. ( c?mlZd .
for obtaining an e¢-optimal policy is O (:(11_ 7‘};), where C Is a

constant that characterizes the exploratoriness of the dataset.
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Finite-sample analysis

* Previous reasoning builds on consistency of Q*-irrelevant
abstractions

* Finite-sample guarantee additionally requires:
1. Concentration bounds: | f — 7' fllz.p =~ [If — T fll..

. Partofitistoshow 7§ f =~ T4 f, i.e., ERM close to
population minimizer tor non-realizable least-square!

* Proof idea: all regression problems are effectively
realizable in the eyes of histogram regressor

e The other part: || - ||2,p0 = || - ||2,, with 1/Vn rate
2. Error-propagation: how |lf — 74 fll2.u controls || f — Q*||2..

. nBRM: f — Q" =|(f =Tf)F|(Tf—-TQ")

o« NBVFT: f— Q" =\(f =T f)+H (TS f—T§Q")

controlled by alg  determines error prop
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Error propagation

How |1 = T2 f

* Standard assumption: u puts enough prob in each “block™ of ¢

2, controls || f — Q*||2..

* Corresponds to well-conditioned design matrix for linear class
* Problem: our ¢ Is quite arbitrary

* Any assumption that is independent of ¢7

Assumption 1. We assume that u(s,a) > 0 Vs,a. We further assume that

(1) There exists constant 1 < C4 < oo such that for any s € S,a € A, u(als) > 1/C 4.

(2) There exists constant 1 < Cs < oo such that forany s € S,a € A,s' € S, P(s'|s,a)/u(s") <
Cs. Also dy(s)/u(s) < Cs.

It will be convenient to define C' = CsC 4. sample complexity'

. Key part: P(S/|S, CL)/,LL(S/) < Cs [Munos’03] O( c* lnj% )
e*(1—9)°

e Satisfiable in MDPs whose transition matrix
admits low-rank stochastic factorization
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BVFT loss

0.5 A1

Practical Implementation of BVFT

Challenge: how to set the discretization-level ¢
Observation: degrades to “1-sample” estimation when =0

2
(f(s,&) — (r +ymax f(S’M’))) => positively biased

Prediction: loss should be U-shaped in ¢

Choice of €: minimize loss
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Comparison to FQE (estimating Q™ via Fitted-Q)
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Open question: how to tune FQE’s neural architecture

We cheated using training architecture that produces the best
policy in Asterix

FQE needs to handle pixel input and hence sample-inefficient
BVFT does not care about complexity of state-action space



Hyperparameter tuning for OPE

* Actor-critic algorithms can produce poor critics
e |.e., all candidates are bad A A
Only hope: OPE, but don’t know how to tune hyperparams

* BVFI-PE: can identity Q™ from candidate g's

Normalized MSE of FQE's J(11) estimations
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BVFT-PE outperforms best fixed architecture




