Batch Value-Function Tournament

Nan Jiang

ML Pipelines

	Training	Validation	Testing (Evaluation)
Supervised Learning	difficult (optimization)	easy: cross/holdout validation	easy: just test it
Offline RL	more difficult (hyperparam sensitivity)	even more difficult	most difficult (validation reduces to evaluation)

Reduction to OPE?

- Training algorithms produce π_1 , π_2 , π_3 ,.... Choose (apprx) best one on validation data
- Natural solution: use OPE (off-policy evaluation) to estimate $J(\pi_i)$
- OPE approaches
 - Importance sampling [Precup et al'00, Jiang & Li'16, etc]: exponential variance
 - ADP (e.g., Fitted-Q [Paine et al'20]) / ALP [Liu et al'18, Nachum et al'19, Uehara et al'20, etc]: require additional function approximation
- Elephant in the room: to tune hyperparameters you need to tune hyperparameters!

Analog of SL holdout-validation? i.e., hyperparameter-free?

Reformulation: Value-function Selection

Training algs often produce more than policies... so, select value functions?

Simple(?) Problem

- Run your fav training alg with different neural architectures
- Get candidate value functions f_1 , f_2 , ...
- Select the best approx of Q* using a "small" holdout dataset?
 - "small" = no |S| or exponential-in-horizon
 - & no further function approximation!

What was known

- nothing: can't even handle 2 functions
 - hardness conjecture [Chen & Jiang, ICML-19]
- Our solution: BVFT [Xie & Jiang, ICML-21] with deep RL implementation [Zhang & Jiang, NeurIPS-21]

Markov Decision Process (MDP)

- For t = 0, 1, 2, ..., the agent
 - observes state $s_t \in S$ (very large)
 - chooses action $a_t \in A$ (finite)
 - receives reward $r_t = R(s_t, a_t)$
- Policy $\pi: S \to A$
- Expected return $J(\pi) := (1 \gamma) \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t | s_0; \pi]$
 - assume initial state s_0 wlog
- Key solution concepts
 - Bellman eq: $Q^* = \mathcal{T}Q^*$, $Q^\pi = \mathcal{T}^\pi Q^\pi$ where $(\mathcal{T}f)(s,a) = R(s,a) + \gamma \mathbb{E}_{s'\sim P(s,a)}[\max_{a'} f(s',a')]$
 - Occupancy: $d^{\pi}(s, a) = (1 \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[s_{t} = s, a_{t} = a \mid \pi]$

transition dynamics

 $P: S \times A \rightarrow \Delta(S)$

reward function

 $R: S \times A \rightarrow [0,1]$

Value-function selection in large MDPs

- Dataset $D = \{(s, a, r, s')\}$
 - $(s, a) \sim d^D$ ("data distribution"), r = R(s, a), $s' \sim P(\cdot \mid s, a)$
- Candidate functions: f_1 , f_2
- Suppose one of them is Q*... how to identify it?

• Consistent (∞ data => Q^* identified)

- can have $poly(1/\varepsilon)$ dependence
- Hardness results [Wang et al'20, Zanette'21, Foster et al'21]

Challenge in value-function selection

- Seems possible to verify $Q^* = \mathcal{T}Q^*$ on data?
- Problem: $f \mathcal{T}f$ is unlearnable [Sutton & Barto'18]
- Naive "1-sample" estimator is biased

$$\begin{split} &\mathbb{E}_{d^D}\left[\left(f(s,a)-r-\gamma\max_{a'}f(s',a')\right)^2\right] \\ =&\mathbb{E}_{d^D}\left[\left(f-\mathcal{T}f\right)^2\right] + \mathbb{E}_{d^D}\left[\mathbb{V}_{s'|s,a}[r+\gamma\max_{a'}(s',a')]\right] \\ & \stackrel{:=\|f-\mathcal{T}f\|_{2,d^D}^2,}{\text{what we want}} \end{split} \quad \text{Bayes-error-like term depending on } f \end{split}$$

• unbiased estimation requires "double sampling" [Baird'95] or helper class $\mathcal{G} \ni \mathcal{T}f$ [Antos'08] ("Bellman-completeness")

Seemingly Impossible?

- Validation is just training w/o optimization difficulties!
- Open problem in offline RL (now resolved)

Is poly-sample learning possible w/

- Exploratory data
- F s.t. $Q^* \in F$ (realizability)
- All existing algorithms require stronger assumptions on (e.g., Bellman-completeness)
- Is a positive result possible?

Projected Bellman error $||f - \Pi_{\mathcal{G}} \mathcal{T} f||_{2,d^D}$

- Estimation: $\Pi_{\mathcal{G}} \mathcal{T} f \approx \text{ERM of } \{(s, a) \mapsto r + \gamma \max_{a'} f(s', a')\} \text{ in } G$
 - G needs to have bounded complexity
 - Consistent, i.e., $\|f \Pi_{\mathcal{G}} \mathcal{T} f\|_{2,d^D} = 0 \Leftrightarrow f = Q^*$, if

- $Q^{\star} \in \mathcal{G}$
- G is piecewise constant (induced by some partitioning) [Gordon'95]
- Reason: $\Pi_{\mathcal{G}}\mathcal{T}$ is contraction for piecewise-constant G
- Related to "Q*-irrelevant abstractions" [Li et al'06]
- Where to find such a magical G?
 - create it "out of nothing"!

The ideal choice of *G*

- Does a low-complexity G always exist?
- YES! Just partition SxA according to Q*
 - (SxA).groupBy $\{ (s, a) \Rightarrow round(Q*(s, a) / \varepsilon) \}$
 - #partitions: $O(1/\varepsilon)$ (ε is discretization error)

Chicken-and-egg: only if I knew Q*...

Pairwise Comparison

- Recall that problem is still nontrivial even when |F|=2!
 - One f_1 , f_2 of is Q^* : how to find out from data?
- Partition SxA according to both functions in F simultaneously!
 - size of ϕ : $O(1/\varepsilon^2)$ affordable!!!
- Fixed point of $\widehat{\mathcal{T}}_{\phi}^{\mu}$ will be close to $Q^* =>$ choose the one w/ lower $\|f \widehat{\mathcal{T}}_{\phi}^{\mu}f\|$
- Extend to large F?
 - Naive: generate partition of size $O(1/\varepsilon^{|F|})$

Batch Value-Function Tournament [Xie & Jiang'20b]

- Algorithm: $\arg\min_{f\in\mathcal{F}}\max_{f'\in\mathcal{F}}\|f-\widehat{\mathcal{T}_{\phi_{f,f'}}}f\|_{2,D}$ partition created out of f and f'
 - Inspired by Scheffé tournament & tournament algorithms for model selection in RL [Hallak et al'13, Jiang et al'15]
- Concern: not every ϕ is "good" (i.e., Q^* -irrelevant)
 - For $f = Q^*$: always tested on good $\phi =>$ small error for all f'
 - For bad f: tested on a good ϕ when $f' = Q^* = >$ large max error

Theorem: when F is realizable, the sample complexity of BVFT for obtaining an ε -optimal policy is $\tilde{O}\left(\frac{C^2 \ln \frac{|\mathcal{F}|}{\delta}}{\epsilon^4 (1-\gamma)^8}\right)$, where C is a constant that characterizes the exploratoriness of the dataset.

Finite-sample analysis

- Previous reasoning builds on consistency of Q*-irrelevant abstractions
- Finite-sample guarantee additionally requires:
- 1. Concentration bounds: $||f \widehat{\mathcal{T}}_{\phi}^{\mu} f||_{2,D} \approx ||f \mathcal{T}_{\phi}^{\mu} f||_{2,\mu}$
 - Part of it is to show $\widehat{\mathcal{T}}^{\mu}_{\phi}f \approx \mathcal{T}^{\mu}_{\phi}f$, i.e., ERM close to population minimizer for non-realizable least-square!
 - Proof idea: all regression problems are effectively realizable in the eyes of histogram regressor
 - The other part: $\|\cdot\|_{2,D} \approx \|\cdot\|_{2,\mu}$ with $1/\sqrt{n}$ rate
- 2. Error-propagation: how $||f \mathcal{T}^{\mu}_{\phi} f||_{2,\mu}$ controls $||f Q^{\star}||_{2,\mu}$

• In BRM:
$$f-Q^\star=|(f-\mathcal{T}f)|+|(\mathcal{T}f-\mathcal{T}Q^\star)$$

• In BVFT: $f-Q^\star=|(f-\mathcal{T}_\phi^\mu f)|+|(\mathcal{T}_\phi^\mu f-\mathcal{T}_\phi^\mu Q^\star)$

controlled by alg determines error prop

Error propagation

How $||f - \mathcal{T}^{\mu}_{\phi} f||_{2,\mu}$ controls $||f - Q^{\star}||_{2,\mu}$

- Standard assumption: μ puts enough prob in each "block" of ϕ
- Corresponds to well-conditioned design matrix for linear class
- Problem: our ϕ is quite arbitrary
- Any assumption that is independent of ϕ ?

Assumption 1. We assume that $\mu(s,a) > 0 \ \forall s,a$. We further assume that

- (1) There exists constant $1 \leq C_{\mathcal{A}} < \infty$ such that for any $s \in \mathcal{S}, a \in \mathcal{A}, \mu(a|s) \geq 1/C_{\mathcal{A}}$.
- (2) There exists constant $1 \leq C_{\mathcal{S}} < \infty$ such that for any $s \in \mathcal{S}, a \in \mathcal{A}, s' \in \mathcal{S}, P(s'|s,a)/\mu(s') \leq C_{\mathcal{S}}$. Also $d_0(s)/\mu(s) \leq C_{\mathcal{S}}$.

It will be convenient to define $C = C_{\mathcal{S}}C_{\mathcal{A}}$.

- Key part: $P(s'|s,a)/\mu(s') \leq C_{\mathcal{S}}$ [Munos'03]
- Satisfiable in MDPs whose transition matrix admits low-rank stochastic factorization

sample complexity:

$$\tilde{O}\left(\frac{C^2 \ln \frac{|\mathcal{F}|}{\delta}}{\epsilon^4 (1-\gamma)^8}\right)$$

Practical Implementation of BVFT

- Challenge: how to set the discretization-level ε
- Observation: degrades to "1-sample" estimation when $\varepsilon=0$ $\left(f(s,a)-(r+\gamma\max_{a'}f(s',a'))\right)^2=> \text{positively biased}$
- Prediction: loss should be U-shaped in ε
- Choice of ε : minimize loss

Siyuan Zhang

Comparison to FQE (estimating Q^{π} via Fitted-Q)

- Open question: how to tune FQE's neural architecture
- We cheated using training architecture that produces the best policy in Asterix
- FQE needs to handle pixel input and hence sample-inefficient
- BVFT does not care about complexity of state-action space

Hyperparameter tuning for OPE

- Actor-critic algorithms can produce poor critics
 - i.e., all candidates are bad
- Only hope: OPE, but don't know how to tune hyperparams...
- BVFT-PE: can identify Q^{π} from candidate q's

