Bellman rank and Exploration with Function Approximation

3 core challenges of RL

Random exploration can be inefficient

Generalization

• Large state space

"tabular RL"

Exploration in small state space is tractable

- Optimize chances for reaching under-visited states
- Sample complexity = poly(|S|) (and |A|, H, $1/\varepsilon$, $1/\delta$) "PAC-MDP" [Kearns & Singh'98] [Brafman & Tennenholtz'02] ...

Generalization

• Large state space

Systematic exploration in large state spaces, at least information-theoretically?

ExplorationLearner gathers own data

Formal Model

- Episodic MDP with horizon H
- In each episode: for h = 1, ..., H, learner
 - observes state feature $x_h \in X$ (possibly infinite) (w.l.o.g. $x_1 = x^0$)
 - chooses action $a_h \in A$ (finite & manageable)
 - receives reward $r_h \in \mathbb{R}$ (bounded)
- Learning goal: given F such that $Q^* \in F$, (will relax) w.p. $1 - \delta$, find policy π s.t. $J(\pi^*) - J(\pi) \le \varepsilon$ using $poly(|A|, H, log|F|, 1/\varepsilon, 1/\delta)$ episodes. (can extend to VC-dim)

Proof of lower bound

- Idea: we are allowed unbounded # of states use a depth-H complete tree to essentially emulate MAB w/ $|A|^H$ arms
- Recall that sample complexity lower bound for MAB is $\#arms/\epsilon^2$
- Without function approximation: exponential sample complexity for exploration algorithms
- Remain to show: function approx. does not help

Proof of lower bound

Show: func. approx. does not help:

- Let F be the collection of Q* from all MDPs in family
- $\log |F| = H \log |A|$, always realizable
- In lower bound proof, alg is allowed to specialize to the problem family — giving F does not help
- Bellman-completeness doesn't help either (construction is similar)

Construction from [Krishnamurthy et al'16]

Intuition from the lower bound

- Hopeless if policies induce exponentially many state distributions that have no overlap & share little in common
- To circumvent the lower bound, we'd like to assume the opposite

Construction from [Krishnamurthy et al'16]

Zoo of RL Exploration

Defining Bellman rank Step 1: Average Bellman Error

• Bellman error of f at (x_h, a_h)

$$f(x_h, a_h) - \mathbb{E}_{r_h, x_{h+1}|x_h, a_h} \left[r_h + \max_{a \in \mathcal{A}} f(x_{h+1}, a) \right]$$

- Q^* has 0 Bellman error for all (x_h, a_h) .
- Average Bellman error of f is the linear combination of its Bellman errors over (x_h, a_h)
 - Weights: distribution over x_h induced by policy π .

$$\mathcal{E}^{h}(f,\pi) := \mathbb{E}_{\substack{a_{1:h-1} \sim \pi \\ a_{h} \sim f}} [f(x_{h}, a_{h}) - r_{h} - \max_{a \in \mathcal{A}} f(x_{h+1}, a)]$$

$$a_{h} = \arg\max f(x_{h}, \cdot)$$

- $\mathcal{E}^h(Q^*,\pi)=0$ for all π and h.

Defining Bellman rank Step 2: Bellman error matrices

$$f\in\mathcal{F}$$

$$\pi\in\Pi_{\mathcal{F}}$$

$$\mathbb{E}^{a_{1:h-1}\sim\pi}[f(x_h,a_h)-r_h-\max_{a\in\mathcal{A}}f(x_{h+1},a)]$$
 class of greedy policies
$$\max_{a_h\sim f}[f(x_h,a_h)-r_h-\max_{a\in\mathcal{A}}f(x_{h+1},a)]$$
 induced from F :
$$\Pi_{\mathcal{F}}:=\{x\mapsto\arg\max f(x,\cdot):f\in\mathcal{F}\}$$

Definition: *Bellman rank* is an uniform upper bound on the rank of matrices $\left[\mathcal{E}^h(f,\pi)\right]_{\pi,f}$ over h=1,2,...,H.

Tabular MDP: Bellman rank ≤ #states

"Visual grid-world": Bellman rank ≤ # hidden states

Q*-irrelevant abstractions

- Number of abstract states is small
- Challenge: abstract state does not "block" influence from past
- Witness statistics: for each possible (x, a, r, x')

$$\Pr_{a_{1:h-1} \sim \pi}[x_h = x, r_h = r, x_{h+1} = x' \mid do \ a_h = a]$$

- Dimension: (#abstract states)² * (# actions) * (# possible values for reward)
 - Reward can always be discretized (and incur a small error)

Zoo of RL Exploration

New algorithm: OLIVE

(Optimism-Led Iterative Value-function Elimination)

$$F_1 := F$$
. // version space

(Ignoring statistical slackness parameters)

For iteration t=1, 2, ...

- Choose f_t as the $f \in F_t$ that maximizes $v_f := \max_{a \in \mathcal{A}} f(x^0, a)$
- Estimate the value of π_t the greedy policy of f_t .
 - If $J(\pi^t) \ge v_{ft}$ Estimate by MC evaluation

return π_t .

- Estimate $\mathcal{E}^h(f, \pi_t)$ for all f, h.
- Eliminate f s.t. $\mathcal{E}^h(f, \pi_t) \neq 0, \forall h$ $\Rightarrow F_{t+1}$.

Sample complexity analysis

For iteration t=1, 2, ... How many iterations???

Run π_t for $O(1/\varepsilon^2)$ episodes — Done.

- Estimate the value of π_t the greedy policy of f_t .
 - How many sample trajectories needed?
- Estimate $\mathcal{E}^h(f,\pi_t)$ for all f,h. $\mathbb{E}_{a_{1:h-1}\sim\pi_t,\,a_h\sim f}[f\cdots]$
 - Naive: collect data with $a_{1:h-1} \sim \pi_t$, $a_h \sim f$ for each f
 - |F| samples too many
 - Instead: $a_{1:h-1} \sim \pi_t$, $a_h \sim \text{Unif}(A)$ & Importance Sampling
 - 1 sample of size $O(|A|\log|F|/\varepsilon^2)$ works for all f simultaneously

Sample complexity analysis

Claim: If no statistical errors, #iterations ≤ Bellman rank.

- All surviving f have all-0 columns so far
- Will show: some f has " $\neq 0$ " in the next iteration
- Then: linearly independent rows ⇒ #iterations ≤ matrix rank

 f_t has " $\neq 0$ " unless terminate: (recall π_t is greedy wrt f_t)

$$0 < v_{f_t} - J(\pi_t) = \sum_{h=1}^{H} \mathcal{E}^h(f_t, \pi_t)$$

$$\uparrow$$
Optimized: $v_{f_t} \ge v_{Q^*} = J(\pi^*)$

Sample complexity of OLIVE

Theorem: If $Q^* \in \mathcal{F}$, w.p. $\geq 1-\delta$, OLIVE returns a ε -optimal policy after acquiring the following number of trajectories

Bellman rank
$$\tilde{O}\left(\frac{B^2H^3|\mathcal{A}|}{\epsilon^2}\log(|\mathcal{F}|/\delta)\right)$$

Bellman Equations revisited

$$\mathbb{E}_{\substack{a_{1:h-1} \sim \pi' \\ a_h \sim \pi}} [g(x_h) - r_h - g(x_{h+1})] = 0$$

- f on non-greedy actions never used!
- Reparametrize: $f \Rightarrow (g, \pi)$; $F \Rightarrow G, \Pi$.
- Bellman equations for policy evaluation
 - Even if $\pi^* \notin \Pi$, can still compete with $any \pi \in \Pi$ whose policy-specific value function is (approx.) in G
 - Allow infinite classes with VC-type dimensions

Computational Efficiency

[Dann+JKALS, arXiv'18]

- OLIVE requires solving a constrained optimization problem
 - $f \in \mathcal{F}_t \Leftrightarrow f \in \mathcal{F}, \mathcal{E}^h(f, \pi_{t'}) \neq 0, \forall h \in [H], t' \in [t-1]$
 - $f_t = \max v_f$, subject to the constraints.
- How to access F (or G, Π)?
 - Oracles. E.g.,
 - Cost-sensitive Classification for $\Pi \subset (X \to A)$ Given $\{(x^i \in X, c^i \in R^A)\}_{i \in [n]}$, oracle minimizes $\sum_{i=1}^n c^i(\pi(x^i))$
 - Linear optimization, squared-loss regression for $G \subset (X \to R)$
 - Can we reduce the computation of OLIVE to oracles?

Computational Efficiency

[Dann+JKALS, arXiv'18]

- No polynomial reduction exists
 - NP-hard even in tabular MDPs
 - ERM also NP-hard "absorbs" hardness?
 - Common oracles are efficient in the tabular case i.e., |X| has finite cardinality, $\Pi = X \rightarrow A$
- More recent advances: sample & computationally efficient alg for:
 - linear MDPs (see upcoming lectures)
 - "block MDPs" (see previous "visual gridworld" example): latentstate decoding
 - Check out COLT'21 tutorial: https://rltheorybook.github.io/colt21tutorial

Detailed Analysis (with Statistical Errors)

inefficient exploration

- new distribution is algorithm to previous ones
- area of while space analysis shrinks slowly

efficient exploration

- new distribution is different from previous ones
- area of while space shrinks quickly

Adaptation of [Todd, 1982]: Ellipsoid volume shrinks exponentially if

controlled by sub-optimality

controlled by sample size