Bellman rank and Exploration
with Function Approximation



3 core challenges of RL

Bellman equation
(Dynamic Programming)

v Long-term planning

Approximate DP PAC-MDP

? L
\

X Generalization Exploration X
(Supervised Learning) (Multi-Armed Bandit)
Statistical complexity Optimism in face

(e.g., VC-dimension) of uncertainty



Random exploration can be inefficient

visited in 27 fraction
of all trajectories

Freeway (one of the Atari games)


https://youtu.be/44CilPmlimQ
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“tabular RL”

Exploration in small state space is tractable

* QOptimize chances for reaching uno

* Sample complexity = poly@ (and

er-visited states
A,H,1/¢,1/0)

“PAC-MDP” [Kearns & Singh’98] [Brafman & Tennenholtz’02] ...
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Systematic exploration in
................................. |arge State SpaceS, at |ea8t
information-theoretically?




Formal Model

* Episodic MDP with horizon H

* Ineach episode: forh=1, ..., H, learner

* observes state feature xpe X (possibly infinite) (w.l.0.g. x1 = x0)

* chooses action aye A (finite & manageable)
* receives reward r,e R (bounded)
* Learning goal: given F such that Q* e F, (will relax)

w.p. 1 -6, find policy ms.t. J(*) - J(n) < ¢

using poly(|A|, H, log|F|, 1/¢, 1/6) episodes.  (can extend to VC-dim)

exponential (in H)

lower bound exists!
[Krishnamurthy et al’16]
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Proof of lower bound

|dea: we are allowed unbounded # of states — use a depth-H
complete tree to essentially emulate MAB w/ |A|H arms

Recall that sample complexity lower bound for MAB is #arms/¢2

Without function approximation: exponential sample complexity
for exploration algorithms

Remain to show: function approx. does not help

&b



Show: func. approx. does not help:

Proof of lower bound

log|F| = H log|A|, always realizable

_et F be the collection of Q* from all MDPs in tamily

n lower bound proof, alg is allowed to specialize to the problem
family — giving F does not help

Bellman-completeness doesn't help either (construction is similar)

Construction from [Krishnamurthy et al’16]



Intuition from the lower bound

* Hopeless if policies induce exponentially many state distributions
that have no overlap & share little in common

* To circumvent the lower bound,  Density
we'd like to assume the opposite qm

>

11 Construction from [Krishnamurthy et al’16]
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7 Same setup in PSRs

Finite MDPs Metric space [Kakade et al’03] [Littman et al’02]
[Kearns & Singh’98] Abstraction [Li’09] (small system dim.)
(small #states) (small #abstract states) @ .’
[JKALS’17] .
* All these settings vyielc Bellman rank
* Unified algorithm, pol lal guarantee v .
() m °
W v v determinis _ ,é:;é_*‘\k PS?W/ rich observation o
. v [Krishnar B0 = and reactive value function .
® o N ®mall #hidden-states) o
hidden o
LQR control state % N y X
[Ibrahimi et al’12] '; TSR s
(small #variables)
P(x’|x,a) | = X ?' Cge
O000000
MDPs w/ low-rank transition matrix o’ ) 11
[Barreto et al’11] o’ ’ 2 [l
(small matrix rank) oo
o ® . I_L
o Worst-case construction
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Bellman rank

Step 1: Average Bellman Error

* Bellman error of f at

f(ajha a’h) T Erh,xh+1|a}h,ah ,rh _|_ ma’Xf(xh—Fl? CL)

(xn, an)

acA

- Q*has 0 Bellman error for all (xz, ar).

* Average Bellman error of f is the linear combination of its
Bellman errors over (xu, ar)

- Weights: distribution over x; induced by policy 7.

Sh(f,ﬂ) = Eavnoi~r|f(zh,an) — rh — max f(zhait,a)]

aprv
ap, = argmax [ (zp, )

- EM@Q*,7) =0 for all wand h.

11
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Defining Bellman rank
Step 2: Bellman error matrices

feF
T ETLp | EN(f,m) =
l Eal: —1~T f Lh,Qp) —TH — maxf LThi1,Q
class of greedy poligies athf I ) acA (@ht1, )]
induced from F:
[Ir:={x— argmax|f(xz,-): f € F}

Definition: Bellman rank is an uniform upper bound on
the rank of matrices [5h(f, W)} - f over h=12, ..., H.




Tabular MDP: Bellman rank < #states

f

>

Eavn—r~r[f(Th, an) — 1y — max f(zhy1,a)] Bellman error of
ath aGA ,'
v on each state

distribution over states
iInduced by 7

13
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Q*-irrelevant abstractions

Number of abstract states is small

Challenge: abstract state does not “block” influence from past

Witness statistics: for each possible (x, a, r, x”)
Pry, . ~xlxn =27 =7,2101 = 2" | do ap, = a

Dimension: (#abstract states)2 * (# actions) * (# possible values
for reward)

 Reward can always be discretized (and incur a small error)
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B-rank < #states  B-rank < poly(#abs. states) ¥ B-rank < poly(system dim.)

v / + deterministic dynamics
[Krishnamurthy et al’16]
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B-rank < . X
poly(#variables) .’

P(x’\x,a) = X 7 . ° * Cﬁ

et OO000000

. ) o 1
B-rank < transition-matrix rank .° M
e F .
e : n
o’ Worst-case construction




New algorithm: OLIVE

(Optimism-Led lterative Value-function Elimination)

F1:=F // version space (Ignoring statistical slackness parameters)

For iteration t=1, 2, ...

* Choose f; as the f e F; that maximizes vy = nax f(z°, a)
a

* Estimate the value of t; — the greedy policy of f:.

o If J(tf) =0y return ;. V. }fE VARV
Estimate by MC evaluation
* Estimate £"(f,m) for all f, h.
* Eliminate f s.t. gh(f,m,) #0, Vh T 240 40
= Ft-|-1 . +0 *0
Bellman error matrix
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Sample complexity analysis

For iteration t=1, 2, ... How many iterations???

Run i, for O(1/€2) episodes — Done.

* Estimate the value of i; — the greedy policy of f;

™ How many sample trajectories
needed?
/h ...................... A _
. EStlmate g (f? T‘-t) fOI’ a”j:, h. ‘Laflzh—lNﬂ-t) a’th [f * e ]

- Naive: collect data with ai.p-1 ~ 714, an~ f for each f

F| samples — too many

nstead: ain-1 ~ 7, an ~ Unif(A) & Importance Sampling

- 1 sample of size O(|A[log|F|/e2) — works for all f simultaneously
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Sample complexity analysis

Claim: If no statistical errors, #1iterations < Bellman rank.

* All surviving f have all-O columns so far

~1* Will show: some f has "= 0" In the next iteration

* Then: linearly independent rows = #iterations < matrix rank

‘ft has "= 0" unless terminate: v f: SRV
(recall 7t; is greedy wrt f;)
H h
0 < Vg, — J(ﬂ-t) — thl & (fta 7Tt)
T (Us; +0 *0
Optimized: vy, = vg* = J(1t*) #0 +0
Bellman error matrix
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Sample complexity of OLIVE

Theorem: If Q* € F, w.p. > 1-5, OLIVE returns a e-optimal policy

after acquiring the following number of trajectories

f survives if




Sellman Equations revisited

4:(11;h_1N7T/ [g(:ljh) o /rh D g(xh+1)] — O

anp~YTr

* f on non-greedy actions never used!
* Reparametrize: f = (g, 7); F = G, I1.
* Bellman equations for policy evaluation

* Evenif t* g Il, can still compete with any 7 e I1

whose policy-specific value function is (approx.) in G

* Allow infinite classes with VC-type dimensions

21
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Computational Efficiency
[Dann+JKALS, arXiv'18]

* OLIVE requires solving a constrained optimization problem
e feF o feF,Ef,my)#0,Vhe[H]t €t —1]
* f; =max vy, Subject to the constraints.

* How to access F (or G, I1)7

 QOracles. E.g.,
* (Cost-sensitive Classification for [TC (X — A)

Given {(xie X, ¢i € R)}igm], Oracle minimizes >_i—; ¢ (m(z"))
e Linear optimization, squared-loss regression for G C (X — R)

 (Can we reduce the computation of OLIVE to oracles?
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Computational Efficiency
[Dann+JKALS, arXiv'18]

* No polynomial reduction exists
* NP-hard even In tabular MDPs

* ERM also NP-hard — “absorbs” hardness”?

e Common oracles are efficient in the tabular case
.e., |X| has finite cardinality, [T=X — A

* More recent advances: sample & computationally efficient alg for:
* |inear MDPs (see upcoming lectures)

* “block MDPs” (see previous “visual gridworld” example): latent-
state decoding

* Check out COLT’21 tutorial: https://rltheorybook.qgithub.io/
colt?1tutorial



https://rltheorybook.github.io/colt21tutorial
https://rltheorybook.github.io/colt21tutorial

24

Detailed Analysis (with Statistical

—rrors)




B (Bellman rank)

25128

X fooX X
(= %)

g’ controlled by
sample size

B=2




inefficient exploration efficient exploration

* new distribution |sa|gor|thm e new distribution is different

to previous ones from previous ones

* area of while SpaCELaIstS * area of while space
shrinks slowly shrinks quickly

26 /28
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Adaptation of [ Todd,1982]:
Ellipsoid volume shrinks exponentially if

(—,-»| > 3VB x 2¢

T T

controlled by sub-optimality controlled by sample size

28 /28




