State Abstractions

Notations and Setup

- MDP $M = (S, A, P, R, \gamma)$
- Abstraction $\phi: S \rightarrow S_{\phi}$
- Surjection aggregate states and treat as equivalent
- Are the aggregated states really equivalent?
- Do they have the same...
 - optimal action?
 - Q* values?
 - dynamics and rewards?

Outline of the lecture

- 1. Define various notions/criteria of abstractions
- 2. Study their relationships
- 3. Analyze how to use them (e.g., building an abstract model) in planning and learning
 - Abstract model will also appear in 1 & 2

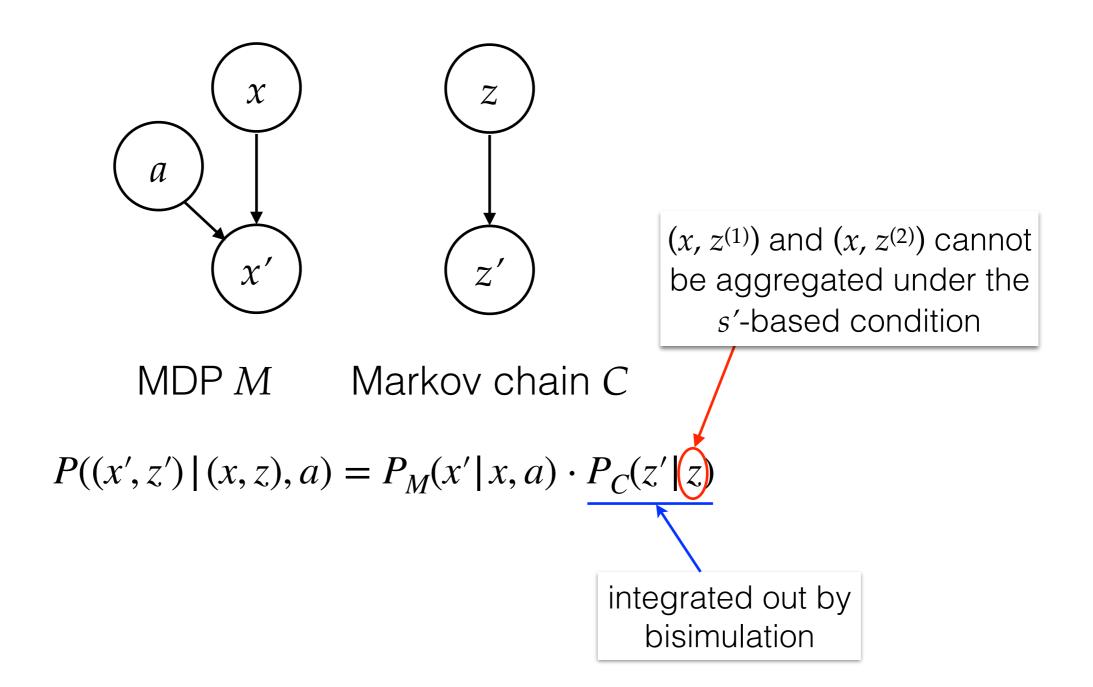
Abstraction hierarchy

An abstraction ϕ is ... if ... $\forall s^{(1)}, s^{(2)}$ where $\phi(s^{(1)}) = \phi(s^{(2)})$

- π^* -irrelevant: $\exists \pi_M^* \text{ s.t. } \pi_M^*(s^{(1)}) = \pi_M^*(s^{(2)})$
- Q^* -irrelevant: $\forall a , Q_M^*(s^{(1)}, a) = Q_M^*(s^{(2)}, a)$
- Model-irrelevant: $\forall a \in A$, $R(s^{(1)}, a) = R(s^{(2)}, a)$ (bisimulation) $\forall a \in A, x' \in S_{\phi}, P(x' \mid s^{(1)}, a) = P(x' \mid s^{(2)}, a)$ $\sum_{s' \in \phi^{-1}(x')} P(s' \mid s^{(1)}, a)$

Theorem: Model-irrelevance $\Rightarrow Q^*$ -irrelevance $\Rightarrow \pi^*$ -irrelevance

Why not $P(s' | s^{(1)}, a) = P(s' | s^{(2)}, a)$?



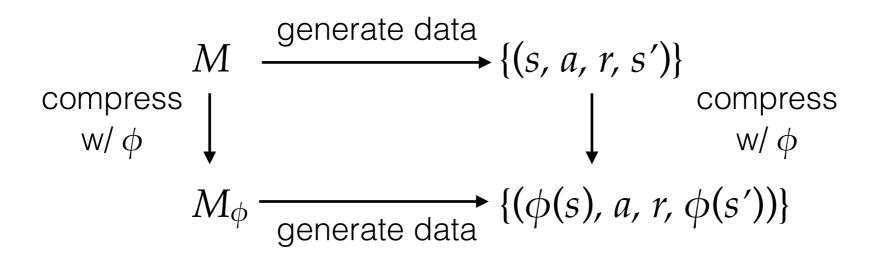
Abstraction induces an equivalence relation

- Reflexivity, symmetry, transitivity
- Equivalence notion is a canonical representation of abstraction (i.e., what symbol you associate with each abstract state doesn't matter; what matters is which states are aggregated together)
- Partition the state space into equivalence classes
- Coarsest bisimulation is unique (see proof in notes)
 - sketch: if ϕ_1 and ϕ_2 are both bisimulations, their *common coarsening* is also a bisimulation (two states are aggregated if they are aggregated under *either* ϕ_1 or ϕ_2)

The abstract MDP implied by bisimulation

 ϕ is bisimulation: $R(s^{(1)}, a) = R(s^{(2)}, a)$, $P(x' \mid s^{(1)}, a) = P(x' \mid s^{(2)}, a)$

- MDP $M_{\phi} = (S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma)$
- For any $x \in S_{\phi}$, $a \in A$, $x' \in S_{\phi}$
 - $R_{\phi}(x, a) = R(s, a)$ for any $s \in \phi^{-1}(x)$
 - $P_{\phi}(x' \mid x, a) = P(x' \mid s, a)$ for any $s \in \phi^{-1}(x)$
- No way to distinguish between the two routes:



Implications of bisimulation

- Q^* is preserved
- Q_M^{π} is preserved for any π lifted from an abstract policy
 - the policy must take the same action (distribution) across aggregated states

Extension to handle action aggregation

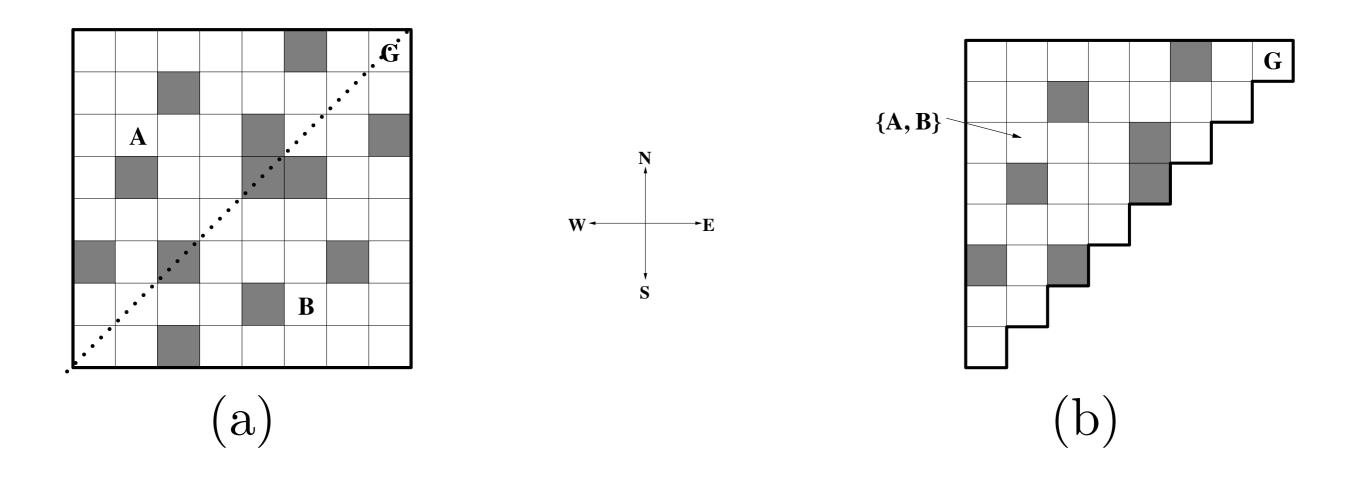


Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for non-exact minimization in Markov Decision Processes. 2004.

Definition 3 (Approximate abstractions). Given MDP $M = (S, A, P, R, \gamma)$ and state abstraction ϕ that operates on S, define the following types of abstractions:

- 1. ϕ is an ϵ_{π^*} -approximate π^* -irrelevant abstraction, if there exists an abstract policy $\pi : S_{\phi} \to A$, such that $\|V_M^* V_M^{[\pi]_M}\|_{\infty} \leq \epsilon_{\pi^*}$.
- 2. ϕ is an ϵ_{Q^*} -approximate Q^* -irrelevant abstraction if there exists an abstract Q-value function $f: S_{\phi} \times \mathcal{A} \to \mathbb{R}$, such that $\|[f]_M Q_M^*\|_{\infty} \leq \epsilon_{Q^*}$.
- 3. ϕ is an (ϵ_R, ϵ_P) -approximate model-irrelevant abstraction if for any $s^{(1)}$ and $s^{(2)}$ where $\phi(s^{(1)}) = \phi(s^{(2)}), \forall a \in \mathcal{A}$,

$$|R(s^{(1)},a) - R(s^{(2)},a)| \le \epsilon_R, \quad \left\| \Phi P(s^{(1)},a) - \Phi P(s^{(2)},a) \right\|_1 \le \epsilon_P.$$
(3)

Useful notation: Φ is a $|\mathcal{S}_{\phi}| \times |\mathcal{S}|$ matrix, with $\Phi(x,s) = \mathbb{I}[\phi(s) = x]$

- lifting a state-value function: $[V_{M_{\phi}}^{\star}]_{M} = \Phi^{\top} V_{M_{\phi}}^{\star}$
- collapsing the transition distribution: $\Phi P(s, a)$

Theorem 2. (1) If ϕ is an (ϵ_R, ϵ_P) -approximate model-irrelevant abstraction, then ϕ is also an approximate Q^* -irrelevant abstraction with approximation error $\epsilon_{Q^*} = \frac{\epsilon_R}{1-\gamma} + \frac{\gamma \epsilon_P R_{\max}}{2(1-\gamma)^2}$. (2) If ϕ is an ϵ_{Q^*} -approximate Q^* -irrelevant abstraction, then ϕ is also an approximate π^* -irrelevant abstraction with approximation error $\epsilon_{\pi^*} = 2\epsilon_{Q^*}/(1-\gamma)$.

- (2) follows directly from a known result; can you see?
- Construct the f in the definition of approx. Q*-irrelevance:

 ϕ is an ϵ_{Q^*} -approximate Q^* -irrelevant abstraction if there exists an abstract Q-value function $f: S_{\phi} \times \mathcal{A} \to \mathbb{R}$, such that $\|[f]_M - Q_M^*\|_{\infty} \leq \epsilon_{Q^*}$.

• Define $M_{\phi} = (S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma)$ w/ any weighting distributions $\{p_x : x \in S_{\phi}\}$, where each p_x is supported on $\phi^{-1}(x)$

 $R_{\phi}(x, a) = \sum_{s \in \phi^{-1}(x)} p_x(s) R(s, a), P_{\phi}(x, a) = \sum_{s \in \phi^{-1}(x)} p_x(s) \Phi P(s, a).$

• $|R_{\phi}(\phi(s), a) - R(s, a)| \leq \varepsilon_R$, $|P_{\phi}(\phi(s), a) - \Phi P(s, a)| \leq \varepsilon_P$.

• Set
$$f := Q_{M_{\phi}}^{\star}$$
, bound $\|[f]_M - Q_M^{\star}\|_{\infty}$

Outline of the lecture

- 1. Define various notions/criteria of abstractions
- 2. Study their relationships
- 3. Analyze how to use them (e.g., building an abstract model) in planning and learning
 - e.g., plan in M_{ϕ} to reduce computational cost
 - If ϕ is not exact bisimulation, what's sub-optimality as a function of (ε_R , ε_P) ? (Partially answered; will take a closer look)
 - What if ϕ is only approximately Q*-irrelevant? Is the abstract model still useful? Can we still bound loss as a function of ε_{Q^*} ?
 - Learning setting?

Loss of
$$\left[\pi_{M_{\phi}}^{\star}\right]_{M}$$
: approx. bisimulation

- Recall: M_{ϕ} defined using any weighting distributions $\{p_x\}$ satisfies $|R_{\phi}(\phi(s), a) R(s, a)| \le \varepsilon_R$, $||P_{\phi}(\phi(s), a) \Phi P(s, a)||_1 \le \varepsilon_P$.
- Apply earlier Theorem: $\left\|V_M^{\star} V_M^{[\pi_{M_{\phi}}^{\star}]_M}\right\|_{\infty} \leq \frac{2\epsilon_R}{(1-\gamma)^2} + \frac{\gamma\epsilon_P R_{\max}}{(1-\gamma)^3}$
- Can improve: $\left\| V_M^{\star} V_M^{[\pi_{M_{\phi}}^{\star}]_M} \right\|_{\infty} \leq \frac{2\epsilon_R}{1-\gamma} + \frac{\gamma\epsilon_P R_{\max}}{(1-\gamma)^2}$
- Idea: for any $\pi: S_{\phi} \to A$, $\left\| [V_{M_{\phi}}^{\pi}]_{M} V_{M}^{[\pi]_{M}} \right\|_{\infty} \leq \frac{\epsilon_{R}}{1-\gamma} + \frac{\gamma \epsilon_{P} R_{\max}}{2(1-\gamma)^{2}}$
- Finally,

$$V_{M}^{\star}(s) - V_{M}^{[\pi_{M_{\phi}}^{\star}]_{M}}(s) = V_{M}^{\star}(s) - V_{M_{\phi}}^{\star}(\phi(s)) + V_{M_{\phi}}^{\star}(\phi(s)) - V_{M}^{[\pi_{M_{\phi}}^{\star}]_{M}}(s)$$
$$\leq \left\| Q_{M}^{\star} - [Q_{M_{\phi}}^{\star}]_{M} \right\|_{\infty} + \left\| [V_{M_{\phi}}^{\pi_{M_{\phi}}^{\star}}]_{M} - V_{M}^{[\pi_{M_{\phi}}^{\star}]_{M}} \right\|_{\infty}$$

• Lesson: w/ approx. bisimulation, take the $\max_{\pi} \|V_M^{\pi} - V_{\widehat{M}}^{\pi}\|_{\infty}$ route instead of the $\|Q_M^{\star} - Q_{\widehat{M}}^{\star}\|$ route to save dependence on horizon

Loss of
$$\left[\pi_{M_{\phi}}^{\star}\right]_{M}$$
: approx. Q*-irrelevance

- M_{ϕ} well defined, but transitions/rewards don't make sense
- Can still show: $\|[Q_{M_{\phi}}^{\star}]_{M} Q_{M}^{\star}\|_{\infty} \leq 2\epsilon_{Q^{\star}}/(1-\gamma)$
- Exact case ($\epsilon_{Q^{\star}} = 0$): $\forall s^{(1)}, s^{(2)}$ where $\phi(s^{(1)}) = \phi(s^{(2)})$ $R(s^{(1)}, a) + \gamma \langle P(s^{(1)}, a), V_M^{\star} \rangle = Q^{\star}(s^{(1)}, a) = Q^{\star}(s^{(2)}, a) = R(s^{(2)}, a) + \gamma \langle P(s^{(2)}, a), V_M^{\star} \rangle$

"inverse" of lifting (can only be applied to piece-wise constant functions)
So:
$$(\mathcal{T}_{M_{\phi}}[Q_{M}^{\star}]_{\phi})(x,a) = R_{\phi}(x,a) + \gamma \langle P_{\phi}(x,a), [V_{M}^{\star}]_{\phi} \rangle$$

 $= \sum_{s \in \phi^{-1}(x)} p_{x}(s) (R(s,a) + \gamma \langle \Phi P(s,a), [V_{M}^{\star}]_{\phi}))$
 $= \sum_{s \in \phi^{-1}(x)} p_{x}(s) (R(s,a) + \gamma \langle P(s,a), V_{M}^{\star}))$
 $= \sum_{s \in \phi^{-1}(x)} p_{x}(s) [Q_{M}^{\star}]_{\phi}(x,a) = [Q_{M}^{\star}]_{\phi}(x,a).$

Loss of
$$\left[\pi_{M_{\phi}}^{\star}\right]_{M}$$
: approx. Q*-irrelevance

- Approximate case: proof breaks as Q_M^* not piece-wise constant
- Workaround: define a new model M_{ϕ} over S $R'_{\phi}(s, a) = \mathbb{E}_{\tilde{s} \sim p_{\phi(s)}}[R(\tilde{s}, a)], \qquad P'_{\phi}(s'|s, a) = \mathbb{E}_{\tilde{s} \sim p_{\phi(s)}}[P(s'|\tilde{s}, a)].$
- Can show: M_{ϕ} and $M_{\phi'}$ share the same Q^* (up to lifting)

•
$$\left\| [Q_{M_{\phi}}^{\star}]_{M} - Q_{M}^{\star} \right\|_{\infty} = \left\| Q_{M_{\phi}^{\star}}^{\star} - Q_{M}^{\star} \right\|_{\infty} \leq \frac{1}{1 - \gamma} \left\| \mathcal{T}_{M_{\phi}^{\star}} Q_{M}^{\star} - Q_{M}^{\star} \right\|_{\infty}$$
$$\left| (\mathcal{T}_{M_{\phi}^{\star}} Q_{M}^{\star})(s, a) - Q_{M}^{\star}(s, a) \right|$$
$$= \left| R_{\phi}^{\prime}(s, a) + \gamma \langle P_{\phi}^{\prime}(s, a), V_{M}^{\star} \rangle - Q_{M}^{\star}(s, a) \right|$$
$$= \left| \left(\sum_{\tilde{s}: \phi(\tilde{s}) = \phi(s)} p_{x}(\tilde{s}) \left(R(\tilde{s}, a) + \gamma \langle P(\tilde{s}, a), V_{M}^{\star} \rangle \right) \right) - Q_{M}^{\star}(s, a) \right|$$
$$= \left| \sum_{\tilde{s}: \phi(\tilde{s}) = \phi(s)} p_{x}(\tilde{s}) \left(Q_{M}^{\star}(\tilde{s}, a) - Q_{M}^{\star}(s, a) \right) \right| \leq \left| \sum_{\tilde{s}: \phi(\tilde{s}) = \phi(s)} p_{x}(\tilde{s}) (2\epsilon_{Q^{\star}}) \right|$$

Loss of
$$\left[\pi_{M_{\phi}}^{\star}\right]_{M}$$
: approx. Q*-irrelevance

- Lesson: with Q*-irrelevance, the $\max_{\pi} \|V_M^{\pi} V_{\widehat{M}}^{\pi}\|_{\infty}$ approach is not available; $\|Q_M^{\star} Q_{\widehat{M}}^{\star}\|$ is the only choice
- If ϕ does not respect transition/reward, our analysis does not have to either!

Recap

- Theorem 2. (1) If φ is an (ε_R, ε_P)-approximate model-irrelevant abstraction, then φ is also an approximate Q^{*}-irrelevant abstraction with approximation error ε_{Q*} = ε_R/(1-γ) + γε_PR_{max}/(2(1-γ)²).
 (2) If φ is an ε_{Q*}-approximate Q^{*}-irrelevant abstraction, then φ is also an approximate π^{*}-irrelevant abstraction with approximation error ε_{π*} = 2ε_{Q*}/(1 γ).
- Given weighting distributions $\{p_x\}$, define $M_{\phi} = (S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma)$ $R_{\phi}(x, a) = \sum_{s \in \phi^{-1}(x)} p_x(s) R(s, a), P_{\phi}(x, a) = \sum_{s \in \phi^{-1}(x)} p_x(s) \Phi P(s, a).$
- How lossy is it to plan in M_{ϕ} and lift back to M?
 - If approx. bisimulation, use " $\max_{\pi} \|V_M^{\pi} V_{\widehat{M}}^{\pi}\|_{\infty}$ " type analysis $\left\|V_M^{\star} V_M^{[\pi_{M_{\phi}}^{\star}]_M}\right\|_{\infty} \leq \frac{2\epsilon_R}{1-\gamma} + \frac{\gamma\epsilon_P R_{\max}}{(1-\gamma)^2}$
 - If approx. Q*-irrelevance, use " $\|Q_M^* Q_{\widehat{M}}^*\|$ " type analysis

$$\left\| V_M^{\star} - V_M^{[\pi_{M_{\phi}}^{\star}]_M} \right\|_{\infty} \le \frac{2\epsilon_{Q^{\star}}}{(1-\gamma)^2}$$

Compare abstract model w/ bisimulation vs w/ Q*-irrelevance

Both guarantee optimality (exact case), but in different ways

- Consider value iteration (VI) in true model vs abstract model
- Bisimulation: every step of abstract VI resembles that step in true VI, throughout all iterations, b/c $\forall f: \phi(S) \to \mathbb{R}, \ \mathcal{T}[f]_M = [\mathcal{T}_{M_{\phi}}f]_M$
- Q*-irrelevance: abstract VI initially behaves crazily. It only starts to resemble true VI when the function is close to Q_M^*
 - This is a circular argument

 $\mathcal{T}Q_M^\star = [\mathcal{T}_{M_\phi}[Q_M^\star]_\phi]_M$

- Secret is stability—contraction of abstract Bellman update
- Abstract Bellman update is a special case of projected Bellman update, and in general stability is not guaranteed. In that case, "Q*-irrelevance" alone is not enough to guarantee optimality

The learning setting

- Given: $D = \{D_{s,a}\}_{(s,a)\in\mathcal{S}\times\mathcal{A}}$ and ϕ
- Algorithm: CE after processing data w/ ϕ
- Shouldn't assume $|D_{s,a}|$ is the same for all (s, a)
 - ... as we want to handle $|D| \ll |S|$
 - What should appear in the bound to describe sample size? $n_{\phi}(D) := \min_{x \in S_{\phi}, a \in \mathcal{A}} |D_{x,a}|, \text{ where } D_{x,a} := \bigcup_{s \in \phi^{-1}(x)} D_{s,a}.$
 - At the mercy of data to be exploratory

The learning setting

- Analysis varies according to whether ϕ is (approx.) bisimulation or Q*-irrelevant and the style ($\max_{\pi} \|V_M^{\pi} V_{\widehat{M}}^{\pi}\|_{\infty}$ vs $\|Q_M^{\star} Q_{\widehat{M}}^{\star}\|$)
- Will show analysis of Q*-irrelevance (can only use " $||Q_M^{\star} Q_{\widehat{M}}^{\star}||$ ")
- Let \widehat{M}_{ϕ} be the estimated model
- Let M_{ϕ} be an abstract model w/ weighting distributions $p_x(s) \propto |D_{s,a}|$
- M_{ϕ} is the "expected model" of \widehat{M}_{ϕ}

$$\left\|Q_{M}^{\star}-[Q_{\widehat{M}_{\phi}}^{\star}]_{M}\right\|_{\infty} \leq \left\|Q_{M}^{\star}-[Q_{M_{\phi}}^{\star}]_{M}\right\|_{\infty} + \left\|[Q_{M_{\phi}}^{\star}]_{M}-[Q_{\widehat{M}_{\phi}}^{\star}]_{M}\right\|_{\infty}$$

Approximation error

- "Bias", informally
- Doesn't vanish with more data
- Smaller with a finer ϕ (not w/ bisimulation; we will see why...)

Estimation error

- "Variance", informally
- Goes to 0 w/ infinite data
- Smaller with a coarser ϕ

$$\begin{split} \left\| Q_{M}^{\star} - [Q_{\widehat{M}_{\phi}}^{\star}]_{M} \right\|_{\infty} &\leq \left\| Q_{M}^{\star} - [Q_{M_{\phi}}^{\star}]_{M} \right\|_{\infty} + \left\| [Q_{M_{\phi}}^{\star}]_{M} - [Q_{\widehat{M}_{\phi}}^{\star}]_{M} \right\|_{\infty} \\ & \text{already handled} \qquad \text{to be analyzed} \end{split}$$

- Reusing the analysis for $||Q_M^{\star} Q_{\widehat{M}}^{\star}||$
- Challenge: data is not generated from M_{ϕ}
- Leverage the fact that Hoeffding can be applied to r.v.'s with nonidentical distributions

$$\begin{split} \left\| [Q_{M_{\phi}}^{\star}]_{M} - [Q_{\widehat{M}_{\phi}}^{\star}]_{M} \right\|_{\infty} &= \left\| Q_{M_{\phi}}^{\star} - Q_{\widehat{M}_{\phi}}^{\star} \right\|_{\infty} \\ &\leq \frac{1}{1 - \gamma} \left\| Q_{M_{\phi}}^{\star} - \mathcal{T}_{\widehat{M}_{\phi}} Q_{M_{\phi}}^{\star} \right\|_{\infty} = \frac{1}{1 - \gamma} \left\| \mathcal{T}_{\widehat{M}_{\phi}} Q_{M_{\phi}}^{\star} - \mathcal{T}_{M_{\phi}} Q_{M_{\phi}}^{\star} \right\|_{\infty} \\ & |(\mathcal{T}_{\widehat{M}_{\phi}} Q_{M_{\phi}}^{\star})(x, a) - (\mathcal{T}_{M_{\phi}} Q_{M_{\phi}}^{\star})(x, a)| \\ &= |\widehat{R}_{\phi}(x, a) + \gamma \langle \widehat{P}_{\phi}(x, a), V_{M_{\phi}}^{\star} \rangle - R_{\phi}(x, a) - \gamma \langle P_{\phi}(x, a), V_{M_{\phi}}^{\star} \rangle| \\ &= \left| \frac{1}{|D_{x,a}|} \sum_{s \in \phi^{-1}(x)} \sum_{(r,s') \in D_{s,a}} \left(r + \gamma V_{M_{\phi}}^{\star}(\phi(s')) - R(s, a) - \gamma \langle P(s, a), [V_{M_{\phi}}^{\star}]_{M} \rangle \right) \right| \end{split}$$