State Abstractions



Notations and Setup

MDP M =(S, A, PR, y)

Abstraction ¢ : S =S5

Surjection — aggregate states and treas
Are the aggregated states really equiva
Do they have the same...

e optimal action?

* Q" values?

* dynamics and rewards”

- as equivalent

ent?



Outline of the lecture

1. [Define various notions/criteria of abstractions

2. |Study their relationships

3. Analyze how to use them (e.g., building an abstract model) in
planning and learning

* Abstract model will also appearin 1 &2



Abstraction hierarchy

An abstraction ¢ is ... if ... ¥ s, s@ where ¢(sV)) = ¢(s?)
o r-irrelevant: 3 i, * s.t. my,*(sW) = 1, *(s@)
o Q*irrelevant: Va, Q,,“(sW, a) = Q,,% (s, a)

* Model-irrelevant: V a € A, R(sM), ga) = R(s?), a)
(bisimulation) Vae A x'€Sy, P’ | s, a)=Px" | s2),a)

l

P(s'| s, a)

zs’éqb—l(x’)

Theorem: Model-irrelevance = Q*-irrelevance = m*-irrelevance



Why not P(s” | s, a)=P(s" | s@, a)

@ O

(x, zD) and (x, z®) cannot
be aggregated under the
s’-based condition

MDP M Markov chain C

P((x,z2") [ (x,2),a) = Py (x'| x,a) - P(Z|

\

iIntegrated out by
bisimulation




Abstraction induces an equivalence relation

Reflexivity, symmetry, transitivity

Equivalence notion is a canonical representation of abstraction
(i.e., what symbol you associate with each abstract state doesn’t matter; what
matters is which states are aggregated together)

Partition the state space into equivalence classes

Coarsest bisimulation is unigue (see proof in notes)

* sketch: if ¢1 and ¢2 are both bisimulations, their common
coarsening is also a bisimulation (two states are aggregated if

they are aggregated under either ¢1 or ¢»)



The abstract MDP implied by bisimulation

¢ is bisimulation: R(s®, a) = R(s@, a), P(x" | s, a) = P(x" | 5@, a)
* MDP My=(Sy, A, Py, Ro, )
* Foranyxe S¢,ae A, x € Sy

* Ry(x, a) = R(s, a) for any s € ¢1(x)

* Py(x"1x,a)=P(x’ls, a)foranys e ¢l(x)

* No way to distinguish between the two routes:

generate data

M »{(s, a,1,5")}
compress COMpress
w/ @ l l w/ @
M, > {(9(s), a, 7, p(s")}

generate data



Implications of bisimulation

* Q%Is preserved
* Q,/"is preserved for any m lifted from an abstract policy

* the policy must take the same action (distribution) across
aggregated states



Extension to handle action aggregation

A

-
o
o

(b)

Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for
non-exact minimization in Markov Decision Processes. 2004.



Definition 3 (Approximate abstractions). Given MDP M = (S, A, P, R, ) and state abstraction ¢ that
operates on S, define the following types of abstractions:

1. ¢ is an e, «-approximate m*-irrelevant abstraction, if there exists an abstract policy 7 : S — A,
such that ||V, — VE]M oo < €xx.

2. ¢ is an eg«-approximate @Q*-irrelevant abstraction if there exists an abstract ()-value function
f:8s x A— R, such that ||[flm — Qisllec < €0+

3. ¢isan (eg, ep)-approximate model-irrelevant abstraction if for any s(!) and s(2) where ¢(s(1)) =
$(5?)),Va € A,

IR(sW,a) — R(s?,a)| < e, “@p(s<l>, a) — ®P(s®, a)”l < ep. 3)

Useful notation: @is a | &, | X | &'| matrix, with
D(x,s) = [[¢(s) = x]

. lifting a state-value function: [VA’;¢]M = cDTVA’;¢

* collapsing the transition distribution: ® P(s, a)
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Theorem 2. (1) If ¢ is an (eg, ep)-approximate model-irrelevant abstraction, then ¢ is also an approximate

*_ . . . . o L eR ryeP Rmax
Q*-irrelevant abstraction with approximation error eqr = 5 + S5

(2) If ¢ is an eg~-approximate QQ*-irrelevant abstraction, then ¢ is also an approximate w*-irrelevant abstraction
with approximation error €~ = 2eg+ /(1 — 7).

e (2) follows directly from a known result; can you see”

* Construct the f in the definition of approx. Q*-irrelevance:

¢ is an eg+-approximate QQ*-irrelevant abstraction if there exists an abstract (J-value function
f:8s x A— R, suchthat ||[f]a — Qoo < €0+

* Define My= (54, A, Py, Ro, ¥) W/ any weighting distributions
{px: x € Se}, Wwhere each pyis supported on ¢-1(x)

Ry(x, a) = Xsepir) px(s) R(s, a), Py(x, a) = Lsepix) px(s) @ P(s, a).
* [Ro(P(s), a) - R(s, a)| < €r, [Po(P(s), a) - D P(s, a)| < ep.

* Set f:= 0y , bound |Iif1y, - Ol

11
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Outline of the lecture

. |Define various notions/criteria of abstractions

. |Study their relationships

. |Analyze how to use them (e.g., building an abstract model) in

planning and learning

* e.9., plan in M, to reduce computational cost

* |t ¢ is not exact bisimulation, what's sub-optimality as a
function of (&g, €p) ? (Partially answered; will take a closer look)

* What if ¢ is only approximately Q*-irrelevant? |s the abstract
model still useful”? Can we still bound loss as a function of eg+?

* Learning setting?
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Loss of |z | : approx. bisimulation
M, Iy

Recall: M, defined using any weighting distributions {p.} satisfies

[Ro(p(s), a) - R(s, a)| < €r, ||Po(d(s), a) - D P(s, a)||1 < ep.

(70 51 M

Var — Vi

2€R —I— ’YGPRmaX
S (1—9)2 (1—7)3

Apply earlier Theorem:

oo

(e, 1

Can improve: |vi -y,

< +
o Ll=7  (1—=79)?

Vi o — Vi ™

| < 2€R YEP Rmax

< €R 4 WGPRmaX
o 1—v  2(1—7)?

ldea: forany 7:S¢ — A, |
Finally,

Vi(s) = Var o™ (s) = Vig(s) — iy, (6(5)) + Vip, (6(5)) — Vg "™ (s)

% M (73 I
SICITAM IS (U PR

oo

Lesson: w/ approx. bisimulation, take the max [|[Vj; - V|« route
instead of the 1@y — @5/l route to save dependence on horizon
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Loss of [%] . approx. Q*-irrelevance
M

* M, well defined, but transitions/rewards don't make sense

* Can still show: [[[Q4s,1x — QFyllee < 2eq+/(1 — 1)

o Exact case (€@ = 0): V s, s@ where ¢(sM) = (s?)
R(s™W,a) +v(P(s™,a), Vi) = Q* (s, a) = Q* (s, a) = R(s®),a) + v(P(s?),a), Vi)

SO:;

“inverse” of |ifting (can only be applied to piece-wise constant functions)
(Tarf[Q3rlg) (. @) = Ry (, @) +7(Ps(, a), [Viilo)
= > pus) (R(s.0) + 1(®P(s,a), [Vir]))

s€p~1(z)

= > pa(s) (R(s,0) +7(P(s,a), Vi)
s€p~ 1 (x)

= Y (9 [Rie(x,a) = [Qils(z,a).
s€p—1(z)
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Loss of [%]

. approx. Q*-irrelevance
M

Approximate case: proof breaks as Q,,” not piece-wise constant

Workaround: define a new model M over S
Eéfqus( )[ (S/|§7 CL)]
Can show: My and My share the same Q* (up to lifting)

R:b(s, a) = Eng¢(8)

i@,

(
§q5(§) qb(s)
_ E

5:9(5)=¢(s)

(Tar, @) (s,
— R} (s,0) + ¥(P)(s,0), Vi) — Qs (s, )]

[R(3,a)],

Py(s']s,a) =

a) — Q) (s,a)]

Pe(3) (R(5,a) +v(P(5,a), VM>)) — Qs (s, a)

Px(5) (@ (5,

a)

— Q(s,0))

<_
e HTM

<

S pe(d)(2eqr)

5:0(5)=¢(s)

= 26@* .
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Loss of [%] . approx. Q*-irrelevance
M

* Lesson: with Q*-irrelevance, the max. [|Vj; — VX | approach is not
avallable; Qi — %l 1s the only choice

* If ¢ does not respect transition/reward, our analysis does not have
to either!
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Recap

e Theorem 2. (1) If ¢ is an (egr, ep)-approximate model-irrelevant abstraction, then ¢ is also an approximate

*_ . . . . . L ER ’YGP Rmax
(QQ*-irrelevant abstraction with approximation error e~ = 15 + S35

(2) If ¢ is an e~ -approximate QQ*-irrelevant abstraction, then ¢ is also an approximate w*-irrelevant abstraction
with approximation error €, = 2eg+ /(1 — ).

* Given weighting distributions {p.}, define My = (S¢, A, Py, Ry, V)
Rg(x, @) = Esepix) px(s) R(s, a), Polx, a) = Lsegi(x) pa(s) @ P(s, a).
* How lossy is it to plan in M and lift back to M?
* [f approx. bisimulation, use “max, [[V{; — VI~ type analysis

 |f approx. Q*-irrelevance, use “l1@u — Q%" type analysis

V]\Z B V]\[:[TJ*\4¢]M|‘ < QER 1 ”VGPRmaX

w 1= (1—=79)?

[ ar, Ina

Vit — Vi < 2t

o (1=7)?

<
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Compare abstract model
w/ bisimulation vs w/ Q*-irrelevance

Both guarantee optimality (exact case), but in different ways

 Consider value iteration (VI) in true model vs abstract model

* Bisimulation: every step of abstract VI resembles that step in true VI,
throughout all iterations, b/c  vf: ¢(S) = R, T(flm = [Tur, flum

* Q*-irrelevance: abstract VI initially behaves crazily. It only starts to
resemble true VI when the function is close to Qm™

This is a circular argument TQy = [Tu, [Qulo]m

Secret Is stability—contraction of abstract Bellman update

Abstract Bellman update is a special case of projected Bellman
update, and in general stability is not guaranteed. In that case,
“Q*-irrelevance” alone is not enough to guarantee optimality



The learning setting

e Given: D = {Ds,a}(s,a)ESx.A and Qb
* Algorithm: CE after processing data w/ ¢
* Shouldn’t assume |D;,| is the same for all (s, a)

* ... as we wantto handle |D| << |S

* What should appear in the bound to describe sample size”?

ne(D) = xe‘rgr;i,geA|Dw,a|, where D, , = U D

* At the mercy of data to be exploratory



The learning setting

Analysis varies according to whether ¢ is (approx.) bisimulation or
Q*-irrelevant and the style ( max: [[Vi; — V|~ VS 1@y — Q%)

Will show analysis of Q*-irrelevance (can only use “|@Q3, — Q% 1")
Let a7, be the estimated model

Let My be an abstract model w/ weighting distributions p.(s) o |Ds.q

My is the “expected model” of a7,

Qi — Q% | _ <

Qi — Qi Jur|_ [, — @3 Jue]|

e — o
Approximation error Estimation error
e “Bias”, informally e “Variance”, informally
 Doesn’t vanish with more data » Goes to O w/ infinite data
* Smaller with a finer ¢ * Smaller with a coarser ¢

(not w/ bisimulation; we will see why...)



l

Qv — [Q%@]MHOO < ‘

R g (A CrA

already handled to be analyzed

* Reusing the analysis for Q3 — Q%]
* Challenge: data is not generated from M,

* [everage the fact that Hoeffding can be applied to r.v.'s with non-
identical distributions
l1@5s, I — 1@% Jar

1
< -

* *
=9, — Qg ||

1
Qir, ~ Tz, @i, |, = 7= T, Q. — Tan @4,

/

‘(TM\¢Q7\4¢)(377 a) — (TMd)Q}(qu)(CIZ, a)l
= |Ry(x,a) + v(Py(x,a), Vir,) — Ro(x,a) — ¥(Py(z,a), Vi)

o

o XS (a6~ Aa) 1P, Vi )

’ sEqb_l(a:) (Tasl)EDs,a




