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In this note we introduce and analyze Rmax, a PAC exploration algorithm for tabular MDPs [1].
Rmax builds on and simplifies the ideas from E3, the first PAC-MDP algorithm [2]. For simplicity
we will adapt Rmax to the episodic setting and provide PAC guarantee (instead of mistake bound /
regret guarantees). See Sham Kakade’s thesis [3] for related analyses.

1 Setup

We consider episodic RL problems where the environment is specified by an infinite-horizon dis-
counted MDP M = (S,A, P,R, γ, d0), but an episode always terminates in finitely many steps.1 S
is the finite state space. A is the finite action space. P : S × A → ∆(S) is the transition function.
R : S × A → [0, Rmax] is the reward function. d0 ∈ ∆(S) is the initial distribution. For simplicity we
assume that R and d0 are known. Given a policy π : S → A, the ultimate measure of π’s performance
is JM (π) := E[

∑∞
h=1 γ

h−1rh |π]; here the subscript emphasizes the fact that we are ultimately inter-
ested in the performance of a policy in the true MDP M . The value of a policy has bounded range
[0, Vmax] where Vmax = Rmax/(1− γ).

Our goal is to collect data for poly(|S|, |A|, 1/(1−γ), 1/ϵ, 1/δ) episodes and return a policy π̂, such
that with probability at least 1− δ,

JM (π̂) ≥ J⋆
M − ϵ · Vmax.

Here J⋆
M := JM (π⋆) and ϵ ∈ [0, 1] is the relative suboptimality.

2 Algorithm

The Rmax algorithm maintains the following quantities:

1. n(s, a) is the visitation count to each (s, a) ∈ S ×A, initialized as 0.

2. n(s, a, s′) is the number of times we observe transition tuples (s, a, s′) ∈ S ×A× S.

Rmax takes a threshold parameter m. At any point of execution, define K := {(s, a) : s ∈ S, a ∈
A, n(s, a) = m}, which is the known set of state-action pairs. The algorithm repeats the following
steps until it finds a near-optimal policy (the detection of success is relatively easy so we omit here):

1We adopt both discouting and finite horizon assumption only to make notations easier.
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1. Build an MDP M̂K as follows: for any s ∈ S, a ∈ A, s′ ∈ S

P̂K(s′|s, a) :=

n(s, a, s′)/n(s, a), if (s, a) ∈ K

I[s′ = s], otherwise
, R̂K(s, a) :=

R(s, a), if (s, a) ∈ K

Rmax, otherwise
.

2. Collect an episode s1, a1, . . . , sH , aH by policy π⋆
M̂K

.

3. If any observed (sh, ah) for 1 ≤ h < H has n(sh, ah) < m, increment both n(sh, ah) and
n(sh, ah, sh+1) by 1.

3 Analysis

Definition 1 (State-action occupancy). Define dπM (s, a) := (1− γ)
∑∞

h=1 γ
h−1PM [sh = s, ah = a|π].

Definition 2 (ℓ1 difference in transition function). Given MDPs M1,M2 that only differ in their tran-
sition functions (P1 and P2 respectively), define

distance(M1,M2) := max
s∈S,a∈A

∥P1(s, a)− P2(s, a)∥1.

Definition 3 (Induced MDP). Define MK as the “expected version” of M̂K : for any s ∈ S , a ∈ A,
s′ ∈ S,

PK(s′|s, a) :=

P (s′|s, a), if (s, a) ∈ K.

I[s′ = s], otherwise.
, RK(s, a) :=

R(s, a), if (s, a) ∈ K.

Rmax, otherwise.

Fact 4 (optimism). By construction, for any π : S → A, JMK
(π) ≥ JM (π).

Lemma 1. For any fixed (s, a), let p̂ be the empirical frequency of P (s, a) based on m i.i.d. samples of s′ ∼
P (s, a). With probability at least 1− δ,

∥p̂− P (s, a)∥1 ≤
√

2

m
log

2 · (2|S| − 2)

δ
.

Proof. See Section 2.2 in Note 3.

Lemma 2. Suppose MDPs M1 and M2 only differ in dynamics. Then ∥V ⋆
M1

− V ⋆
M2

∥∞ ≤ distance(M1,M2) ·
Vmax

2(1−γ) .

Table 1: Relationship between M , MK , and M̂K .
M MK M̂K

Known (K) = M = M ≈ M

Unknown = M self-loop self-loop

2



Proof. Let T1, T2 be the Bellman update operator of M1 and M2 respectively.

∥V ⋆
M1

− T2V ⋆
M1

∥∞ = ∥T1V ⋆
M1

− T2V ⋆
M1

∥∞
= γ max

s,a∈S×A

∣∣Es′∼P1(s,a)[V
⋆
M1

(s′)]− Es′∼P2(s,a)[V
⋆
M1

(s′)]
∣∣

= γ max
s,a∈S×A

⟨P1(s, a)− P2(s, a), V
⋆
M1

− Vmax/2 · 1|S|×1⟩

≤ max
s,a∈S×A

∥P1(s, a)− P2(s, a)∥1 ∥V ⋆
M1

− Vmax/2 · 1∥∞

≤ distance(M1,M2) · Vmax/2.

Therefore,

∥V ⋆
M1

− V ⋆
M2

∥∞ = ∥V ⋆
M1

− T2V ⋆
M1

+ T2V ⋆
M1

− T2V ⋆
M2

∥∞
≤ distance(M1,M2) · Vmax/2 + ∥T2V ⋆

M1
− T2V ⋆

M2
∥∞

≤ distance(M1,M2) · Vmax/2 + γ∥V ⋆
M1

− V ⋆
M2

∥∞.

Solving for the inequality yields the result.

Lemma 3 (Simulation lemma). Suppose M1 and M2 only differ in dynamics. Then ∀π : S → A,

|JM1
(π)− JM2

(π)| ≤ distance(M1,M2) ·
Vmax

2(1− γ)
.

We already proved it in Note 3 (Lemma 1 with ϵR = 0; a γ factor is dropped for convenience).

Lemma 4 (Induced Inequality). Suppose MDPs M1 and M2 agree exactly on K ⊆ S×A in terms of reward
and dynamics. Let escapeK(τ) be 1 if the trajectory τ visits some (s, a) /∈ K, and 0 otherwise. ∀π : S → A,

|JM1
(π)− JM2

(π)| ≤ Vmax · PM1
[escapeK(τ)

∣∣ π].
Proof. Let RM (τ) denote the sum of discounted rewards in τ according to the reward function of M .
We can write vπM1

=
∑

τ PM1
[τ |π]RM1

(τ) (and similarly for M2). For τ such that escapeK(τ) = 1,
define preK(τ) as the prefix of τ where every state-action is in K except for the last one (which
escapes). Similarly define sufK(τ) as the remainder of the episode. Let R(preK(τ)) be the sum of
discounted rewards within the prefix (or suffix), and PM1 [preK(τ)|π] be the marginal probability of
the prefix assigned by M1 under policy π.

Below we upper bound JM1
(π)− JM2

(π); the other direction (upper bounding JM2
(π)− JM1

(π))
is similar and hence omitted.

JM1
(π) =

∑
τ :escapeK(τ)=1

PM1
[τ |π]

(
RM1

(preK(τ)) +RM1
(sufK(τ))

)
+

∑
τ :escapeK(τ)=0

PM1
[τ |π]RM1

(τ)

≤
∑

τ :escapeK(τ)=1

PM1
[τ |π]

(
RM1

(preK(τ)) + Vmax

)
+

∑
τ :escapeK(τ)=0

PM1
[τ |π]RM1

(τ)

≤
∑

preK(τ)

PM1
[preK(τ)|π]

(
R(preK(τ)) + Vmax

)
+

∑
τ :escapeK(τ)=0

PM1
[τ |π]RM1

(τ).
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The last step uses the fact that for any τ that shares the same preK(τ), we can combine their probabili-
ties (because R(preK(τ))+Vmax does not depends on the suffix), and we get the marginal probability
of the prefix. We lower bound vπM2

similarly by relaxing R(sufK(τ)) to 0, and obtain

JM2
(π) ≥

∑
preK(τ)

PM2
[preK(τ)|π]RM2

(preK(τ)) +
∑

τ :escapeK(τ)=0

PM2
[τ |π]RM2

(τ).

Observe that when escapeK(τ) = 0, PM1
[τ |π] = PM2

[τ |π] and RM1
(τ) = RM2

(τ). This can be verified
by expanding PM1 for τ = s1, a1, . . . , sH , aH , which is

d0(s1)π(a1|s1)P1(s2|s1, a1)π(a2|s2) . . . , P1(sH |sH−1, aH−1)π(aH |sH).

Since τ does not escape, P1(sh+1|sh, ah) = P2(sh+1|sh, ah) by definition, so M1 and M2 assigns the
same probability to τ . Similarly we have PM1

[preK(τ)|π] = PM2
[preK(τ)|π]. Subtracting the above

two inequalities,

JM1
(π)− JM2

(π) ≤
∑

preK(τ)

PM1
[preK(τ)|π]Vmax.

The result follows by noticing that the sum of probabilities here is simply PM1 [escapeK(τ)|π].

Sample complexity of Rmax We show that in each episode either π⋆
M̂K

is ϵ-optimal, or there is
significant probability in increasing the counter of some n(s, a) if we set m appropriately. Note that
M̂K will be a good approximation of MK for all states and actions: for (s, a) ∈ K we can set m large
enough so that the empirical estimate is accurate, and for (s, a) /∈ K the two MDPs agree exactly
anyway. With this in mind, consider the situation when π⋆

M̂K
is ϵ-suboptimal:

ϵ Vmax < J⋆
M − JM (π⋆

M̂K
) ≤ JMK

(π⋆)− JM (π⋆
M̂K

) (optimism)

≤ J⋆
MK

− JM (π⋆
M̂K

)

≤ J⋆
M̂K

+ distance(MK , M̂K) · Vmax

2(1−γ) − JM (π⋆
M̂K

) (apply Lemma 2 on MK and M̂K)

≤ JMK
(π⋆

M̂K
) + distance(MK , M̂K) · Vmax

(1−γ) − JM (π⋆
M̂K

).

(apply Lemma 3 on MK , M̂K , and π⋆
M̂K

)

≤ Vmax PM [escape from K
∣∣ π⋆

M̂K
] + distance(MK , M̂K) · Vmax

(1−γ) . (Lemma 4)

We will later use Lemma 1 to guarantee that for all (s, a) ∈ K, ∥P (s, a) − P̂K(s, a)∥1 ≤ η for some
small η. Since MK and M̂K are identical on (s, a) /∈ K, we immediately have distance(MK , M̂K) ≤ η.

In particular, we would like to set η = ϵ(1 − γ)/2, so that the escaping probability is at least
ϵ/2. This η can be guaranteed via Lemma 1 by setting m = Õ( |S|

ϵ2(1−γ)2 log
1
δ ),

2 and “on average” we
increase the counter by ϵ/2 in each episode, so the number of episodes is

Õ

(
|S|2|A|

ϵ3(1− γ)2
log

1

δ

)
.

2There is a union bound over all states and actions here, which only incurs logarithmic dependence on |S × A| and is
suppressed by Õ.
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Note that the above treatment is not accurate as the growth of the counters is random, and we need to
use concentration of measure to show that they will grow to m within the sample complexity bound
with high probability. Note that we cannot use Hoeffding’s here, as later random variables (which
counter will grow, how much the growth is, etc.) highly depend on earlier variables. For a relatively
rigorous treatment (which involves Azuma’s inequality for martingales), see [4, Appendix E].
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