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This note introduces the basics of concentration inequalities and examples of its applications (often
with union bound), which will be useful for the rest of this course.

1 Hoeffding’s Inequality

Theorem 1. Let X1, . . . , Xn be independent random variables on R such that Xi is bounded in the interval
[ai, bi] . Let Sn =

∑n
i=1 Xi. Then for all t > 0,

Pr[Sn − E[Sn] ≥ t] ≤ e−2t2/
∑n

i=1(bi−ai)
2

, (1)

Pr[Sn − E[Sn] ≤ −t] ≤ e−2t2/
∑n

i=1(bi−ai)
2

. (2)

Remarks:

• By union bound, we have Pr[|Sn − E[Sn]| ≥ t] ≤ 2e−2t2/
∑n

i=1(bi−ai)
2

.

• We often care about the convergence of the empirical mean to the true average, so we can devide
Sn by n: Pr

[∣∣∣Sn

n − E[Sn]
n

∣∣∣ ≥ t
]
≤ 2e−2n2t2/

∑n
i=1(bi−ai)

2

.

• A useful rephrase of the result when all variables share the same support [a, b]: with probability

at least 1− δ,
∣∣∣Sn

n − E[Sn]
n

∣∣∣ ≤ (b− a)
√

1
2n ln 2

δ .

• X1, . . . , Xn are not necessarily identically distributed; they just have to be independent.

• The number of variables, n, is a constant in the theorem statement. When n is a random variable
itself, for Hoeffding’s inequality to apply, n cannot depend on the realization of X1, . . . , Xn.
Example: Consider the following Markov chain:

s1

s2

s3

s4

p 1 - p

1



Say we start at s1 and sample a path of length T (T is a constant). Let n be the number of times
we visit s1, and we can use the transitions from s1 to estimate p.

1. Can we directly apply Hoeffding’s inequality here with n as the number of coin tosses? If
you want to derive a concentration bound for this problem, look up Azuma’s inequality.

2. What if we sample a path until we visit s1 N times for some constant N? Can we apply
Hoeffding’s inequality with N as the number of random variables?

2 Multi-Armed Bandits (MAB)

2.1 Formulation

A MAB problem is specified by K distributions over R, {Ri}Ki=1. Each Ri has bounded supported
[0, 1] and mean µi. Let µ⋆ = maxi∈[K] µi. For round t = 1, 2, . . . , T , the learner

1. Chooses arm it ∈ [K].

2. Receives reward rt ∼ Rit .

A popular objective for MAB is the pseudo-regret, which poses the exploration-exploitation challenge:

RegretT =

T∑
t=1

(µ⋆ − µit).

Another important objective is the simple regret:

µ⋆ − µî,

where î is the arm that the learner picks after T rounds of interactions. This poses the “pure explo-
ration” challenge, since all it matters is to make a good final guess and the regret incurred within the
T rounds does not matter. A related objective is called Best-Arm Identification, which asks whether
î ∈ argmaxi∈[K] µi; Best-Arm Identification results often require additional gap conditions.

2.2 Uniform sampling

We consider the simplest algorithm that chooses each arm the same number of times, and after T

rounds selects the arm with the highest empirical mean. For simplicity let’s assume that T/K is an
integer. We will prove a high-probability bound on the simple regret. The analysis gives an example
of the application of Hoeffiding’s inequlaity to a learning problem; the algorithm itself is likely to be
suboptimal.

For simplicity let’s assume that T/K is an integer. After T rounds, each arm is chosen T/K times,
and let µ̂i be the empirical average reward associated with arm i. By Hoeffding’s inequality, we have:

Pr[|µ̂i − µi| ≥ ϵ] ≤ 2e−2Tϵ2/K .

2



Now we want accurate estimation for all arms simultaneously. That is, we want to bound the proba-
bility of the event that any µ̂i deviating from µi too much. This is where union bound is useful:

Pr

[
K⋃
i=1

{|µ̂i − µi| ≥ ϵ}

]
(the event that estimation is ϵ-inaccurate for at least 1 arm)

≤
K∑
i=1

Pr [|µ̂i − µi| ≥ ϵ] ≤ 2Ke−2Tϵ2/K . (union bound, then Hoeffding’s inequality)

To rephrase this result: with probability at least 1− δ, |µ̂i − µi| ≤
√

K
2T ln 2K

δ holds for all i simultane-
ously.

Finally, we use the estimation error to bound the decision loss: recall that î = argmaxi∈[K] µ̂i, and
let i⋆ = argmaxi∈[K] µi.

µ⋆ − µî = µi⋆ − µ̂i⋆ + µ̂i⋆ − µî

≤ µi⋆ − µ̂i⋆ + µ̂î − µî ≤ 2

√
K

2T
ln

2K

δ
.

We can rephrase this result as a sample complexity statement: in order to guarantee that µ⋆ − µî ≤ ϵ

with probablity at least 1− δ, we need T = O

(
K

ϵ2
ln

K

δ

)
.

2.3 Lower bound

The linear dependence of the sample complexity on K makes a lot of sense, as to choose a arm with
high reward we have to try each arm at least once. Below we will see how to mathematically formalize
this idea and prove a lower bound on the sample complexity of MAB.

Theorem 2. For any K ≥ 2, ϵ ≤
√
1/8, and any MAB algorithm, there exists an MAB instance where µ⋆

is ϵ better than other arms, yet the algorithm identifies the best arm with no more than 2/3 probability unless
T ≥ K

72ϵ2 .

The theorem itself is stated as a best-arm identification lower bound, but it is also a lower bound
for simple regret minimization. This is because all arms except the best one is ϵ worse than µ⋆, so
missing the optimal arm means a simple regret of at least ϵ.

See the proof in [1] (Theorem 2); the technique is due to [2] and can be also used to prove the lower
bound on the regret of MAB.

3 Generalization Bounds for Supervised Learning

Consider a simple supervised learning setting: let X be the feature space and Y be the label space; in
this example we consider classification so Y = {0, 1}. Let PX,Y be a distribution over X × Y , and we
are given a dataset {(Xi, Yi)}ni=1 with each (Xi, Yi) drawn i.i.d. from PX,Y . Let F : X → Y be a finite
hypothesis class. The classifier in F that minimizes the classification error is:

f⋆ := argmin
f∈F

E[I[f(X) ̸= Y ]],
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where E[·] is w.r.t. PX,Y . Given only a finite sample, one natural thing to do is empirical risk minimiza-
tion, i.e., find the classifer that has the lowest training error rate on data:

f̂ = argmin
f∈F

Ê[I[f(X) ̸= Y ]] :=
1

n

n∑
i=1

I[f(Xi) ̸= Yi].

The question is, can we give any guarantee to how good the learned classifier f̂ is compared to the
optimal one f⋆, as a function of n? In other words, we want to bound

E[I[f̂(X) ̸= Y )]]− E[I[f⋆(X) ̸= Y )]].

We provide the analysis below, which mainly uses Hoeffding’s and union bound. First of all,

E[I[f̂(X) ̸= Y )]]− E[I[f⋆(X) ̸= Y )]]

≤ E[I[f̂(X) ̸= Y )]]− Ê[I[f̂(X) ̸= Y )]] + Ê[I[f⋆(X) ̸= Y )]]− E[I[f⋆(X) ̸= Y )]] (f̂ is optimal w.r.t. Ê)

≤ 2 ·max
f∈F

|E[I[f(X) ̸= Y )]]− Ê[I[f(X) ̸= Y )]]|. (3)

It then suffices to bound maxf∈F |E[I[f(X) ̸= Y )]]− Ê[I[f(X) ̸= Y )]]|, which is often called a uniform
deviation bound. The key is to realize that, for any fixed f ∈ F , Ê[I[f(X) ̸= Y ]] is the average of
i.i.d. random variables I[f(Xi) ̸= Yi] bounded in [0, 1], whose true expectation is precisely E[I[f(X) ̸=
Y ]]. Applying Hoeffding’s, for a fixed f ∈ F , with probability at least 1− δ, we have

|Ê[I[f(X) ̸= Y ]− E[I[f(X) ̸= Y ]| ≤
√

1

2n
ln

2

δ
.

Union bounding over F and plugging into Eq.(4),

E[I[f̂(X) ̸= Y )]]− E[I[f⋆(X) ̸= Y )]] ≤
√

2

n
ln

2|F|
δ

. (4)
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