CS 542 Statistical RL, Reading Homework for the 1st Week

Nan Jiang

August 26, 2022

The purpose of this homework set is to help you digest course material. No need to submit.

1 Shift of rewards

Consider two MDPs $M = (S, A, P, R, \gamma)$ and $M' = (S, A, P, R', \gamma)$, which only differ in their reward functions. Moreover, we have for any $s \in S, a \in A$,

$$R(s,a) = R'(s,a) + c,$$

where *c* is a universal constant that does not depend on *s* or *a*. For any policy π , let V_M^{π} denote its value function in *M* and $V_{M'}^{\pi}$ denote its value function in *M'*. For any $s \in S$, can you express $V_M^{\pi}(s)$ using *c* and $V_{M'}^{\pi}(s)$?

After proving your result, think about its implications. In the lecture we made the assumption that rewards lie in $[0, R_{\text{max}}]$. Why is this without loss of generality? What if I have an MDP whose rewards lie in $[-R_{\text{max}}, R_{\text{max}}]$?

2 Finite-horizon MDPs

In the lecture we considered infinite-horizon discounted MDPs: we sum up infinitely many rewards and a discount factor less than 1 keeps the sum finite. Now consider an alternative formulation where we cut down the trajectory after H steps, where H is a pre-defined constant. That is, with the same generative process of trajectories, we now consider return to be defined as

$$\mathbb{E}\left[\sum_{h=1}^{H} r_h\right].$$

A finite-horizon MDP is usually specified as $M = (S, A, P, R, H, d_0)$, where H is the episode length (or horizon) and $d_0 \in \Delta(S)$ is the initial state distribution (from which s_1 is drawn. Optimal policies in finite-horizon MDPs are generally *non-stationary*, i.e., you need to look at both the current state and the number of steps remaining to make an optimal decision.

State and prove the analogy of **Q1** for finite-horizon MDPs.

3 Indefinite-horizon MDPs

3.1

Here is yet another formulation, which is similar to finite-horizon MDPs except that the episode length *H* can vary: A subset of the state space $S_{\text{term}} \subset S$ are considered terminal, and an episode $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ keeps rolling out until we first visit a terminal state, $s_H \in S_{\text{term}}$. In general, the length of the epsiode, *H*, is a random variable. The value is still defined as $\mathbb{E}[\sum_{h=1}^{H} r_h]$. Examples include the stochastic shortest paths shown in the slides. Is the analogy of the results in **Q1** and **Q2** still true?

As an example, consider a navigation task where the goal is to get to the destination state as soon as possible. Let's model it as an indefinite-horizon MDP: reward is -1 per step, and the process terminates whenever we reach the destination. It is clear then the return of a policy is the negative expected total number of steps towards destination. Makes sense.

Consider what happens when we add +1 to all rewards. What about +2?

3.2

Suppose there exists some constant H_0 such that $H \le H_0$ holds almost surely for an indefinite-horizon MDP. Can you convert an indefinite-horizon MDP into an equivalent finite-horizon MDP? Hint: add an "absorbing" state which gives 0 reward and loops in itself.

Convert the navigation task in 3.1 into a finite-horizon MDP. What happens when we add +1 to all rewards in the corresponding finite-horizon MDP? What about +2? From **Q2** we know that these shifts should be valid. What's different from the situation in 3.1?

4 Non-stationary dynamics

So far all our definitions consider stationary dynamics, that is, the transition function only depends on the state and action, and does not depend on the time step. A finite-horizon MDP with nonstationary dynamics (and reward function) is a generalization: $M = (S, A, \{P_h\}_{h=1}^H, \{R_h\}_{h=1}^H, H, d_0)$, where $s_1 \sim d_0$, $s_{h+1} \sim P_h(s_h, a_h)$, and $r_{h+1} = R_h(s_h, a_h)$. That is, the transition rule and reward function can change as time elapses.

Answer the following questions:

(1) Why is this a generalization of stationary dynamics?

(2) Can you convert a non-stationary MDP into a stationary one? You may need to augment the state representation. How large is the state space after conversion?

(3) (Open) Does it make sense to define non-stationary dynamics for infinite-horizon, discounted MDPs?