CS 542 Statistical RL, Reading Homework for the 1st Week

Nan Jiang
August 27, 2021

The purpose of this homework set is to help you digest course material. No need to submit.

1 Shift of rewards

Consider two MDPs M = (S, A, P, R,v) and M’ = (S, A, P, R',~), which only differ in their reward
functions. Moreover, we have for any s € S,a € A,

R(s,a) = R'(s,a) + ¢,

where c is a universal constant that does not depend on s or a. For any policy =, let V}; denote its
value function in M and V}}, denote its value function in M’. For any s € S, can you express V()
using ¢ and V[, (s)?

After proving your result, think about its implications. In the lecture we made the assumption
that rewards lie in [0, Riax]. Why is this without loss of generality? What if I have an MDP whose
rewards lie in [— Ryax, Rimax]?

2 Finite-horizon MDPs

In the lecture we considered infinite-horizon discounted MDPs: we sum up infinitely many rewards
and a discount factor less than 1 keeps the sum finite. Now consider an alternative formulation where
we cut down the trajectory after H steps, where H is a pre-defined constant. That is, with the same
generative process of trajectories, we now consider return to be defined as

A finite-horizon MDP is usually specified as M = (S, A, P, R, H,dy), where H is the episode length
(or horizon) and dy € A(S) is the initial state distribution (from which s; is drawn. Optimal policies

E

in finite-horizon MDPs are generally non-stationary, i.e., you need to look at both the current state and
the number of steps remaining to make an optimal decision.
State and prove the analogy of Q1 for finite-horizon MDPs.



3 Indefinite-horizon MDPs

3.1

Here is yet another formulation, which is similar to finite-horizon MDPs except that the episode
length H can vary: A subset of the state space Sierm C S are considered terminal, and an episode
S1,01,7T1, 2,02, T2, . . . keeps rolling out until we first visit a terminal state, s € Sierm. In general, the
length of the epsiode, H, is a random variable. The value is still defined as E[Ef;l r]. Examples
include the stochastic shortest paths shown in the slides. Is the analogy of the results in Q1 and Q2
still true?

As an example, consider a navigation task where the goal is to get to the destination state as soon
as possible. Let’s model it as an indefinite-horizon MDP: reward is —1 per step, and the process
terminates whenever we reach the destination. It is clear then the return of a policy is the negative
expected total number of steps towards destination. Makes sense.

Consider what happens when we add +1 to all rewards. What about +2?

3.2

Suppose there exists some constant Hy such that H < H holds almost surely for an indefinite-horizon
MDP. Can you convert an indefinite-horizon MDP into an equivalent finite-horizon MDP? Hint: add
an ”absorbing” state which gives 0 reward and loops in itself.

Convert the navigation task in 3.1 into a finite-horizon MDP. What happens when we add +1 to
all rewards in the corresponding finite-horizon MDP? What about +2? From Q2 we know that these
shifts should be valid. What’s different from the situation in 3.1?

4 Non-stationary dynamics

So far all our definitions consider stationary dynamics, that is, the transition function only depends
on the state and action, and does not depend on the time step. A finite-horizon MDP with non-
stationary dynamics (and reward function) is a generalization: M = (S, A, { P, }/_ |, {Rx}L |, H, dy),
where s; ~ do, spe1 ~ Pr(sn,an), and rpo1 = Rp(sp,an). That is, the transition rule and reward
function can change as time elapses.

Answer the following questions:
(1) Why is this a generalization of stationary dynamics?
(2) Can you convert a non-stationary MDP into a stationary one? You may need to augment the state
representation. How large is the state space after conversion?
(3) (Open) Does it make sense to define non-stationary dynamics for infinite-horizon, discounted
MDPs?
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