Importance Sampling

(ref: notes on course website; not all contents in notes are covered in class)
Motivating scenario: off-policy evaluation

• Given π, estimate $v^\pi := \mathbb{E}_{s \sim \mu}[V^\pi(s)]$
 • We will use μ as the notation for initial distribution from now on
• Alg outputs some scalar v; accuracy measured by $|v - v^\pi|$
• Previously we solved this problem by on-policy MC
• What if we have data collected using some other policy π_0?
 • Likely the case when we try to evaluate a trained policy using historical data (only meaningful for “real-life” app of RL)
• There are approaches you can already take from what we have learned so far
 • e.g., run expected Sarsa on the off-policy data, and output as $v = \mathbb{E}_{s \sim \mu}[\hat{Q}^\pi(s, \pi(s))]$ the estimate
 • requires function approximation, and is in general biased
• Is there an unbiased estimator?
Introduction to Importance Sampling (IS)

• Suppose we are interested in estimating \(\mathbb{E}_{x \sim p}[f(x)] \)
• If we have \(x \sim p, f(x) \) would be an unbiased MC estimate
• What if we can only sample \(x \sim q \), but still want a “MC-style” estimator?
• IS (or importance weighted, or inverse propensity score (IPS) estimator): \(\frac{p(x)}{q(x)}f(x) \)

• Unbiasedness:

\[
\mathbb{E}_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right] = \sum_x q(x) \left(\frac{p(x)}{q(x)} f(x) \right) = \sum_x p(x)f(x) = \mathbb{E}_{x \sim p}[f(x)]
\]

\(\frac{p(x)}{q(x)} \): Importance weight (ratio), which “converts” the distribution from \(q \) (the data distribution) to \(p \)

• \(\mathbb{E}_{x \sim q} \left[\frac{p(x)}{q(x)} \right] \equiv 1 \): always holds!
Application in contextual bandit (CB)

• CB: episodic MDP with $H = 1$. Actions have no long-term effects. Just optimize the immediate reward.
 • $x \sim \mu$: context distribution (corresponds to initial state distribution of the MDP)
 • agent takes an action a based on x
 • agent observes reward $r \sim R(x, a)$
 • (episode terminates; no next-state)
• The off-policy evaluation problem
 • We have collected a dataset (a bag of (x, a, r) tuples), where $a \sim \pi_b(s)$ (π_b is stochastic)
 • want to know $\nu^\pi := \mathbb{E}_\pi[r]$
 • The π in the subscript is short for $x \sim \mu$, $a \sim \pi$, $r \sim R(x, a)$
 • Let π be also stochastic (can be deterministic)
Application in contextual bandit (CB)

- The data point is a tuple \((x, a, r)\)
- The function of interest is \((x, a, r) \mapsto r\)
- The distribution of interest is \(x \sim \mu, a \sim \pi, r \sim R(x, a)\)
 - Let the joint density be \(p(x, a, r)\), \(\pi: \text{target policy}\)
 - Let the joint density be \(q(x, a, r)\), \(\pi_b: \text{behavior/logging policy}\)
- The data distribution is \(x \sim \mu, a \sim \pi_b, r \sim R(x, a)\)
- The IS estimator:
 \[
 \frac{p(x, a, r)}{q(x, a, r)} \cdot r = \frac{\pi(a | x)}{\pi_b(a | x)} \cdot r
 \]
- Write down the densities
 - \(p(x, a, r) = \mu(x) \cdot \pi(a | x) \cdot R(r | x, a)\)
 - \(q(x, a, r) = \mu(x) \cdot \pi_b(a | x) \cdot R(r | x, a)\)
- To compute importance weight, you don’t need knowledge of \(\mu\) or \(R\)! You just need \(\pi_b\) (or even just \(\pi_b(a | x)\), “proposal prob.”)
Application in contextual bandit (CB)

- Let ρ be a shorthand for $\frac{\pi(a|x)}{\pi_b(a|x)}$, so estimator is $\rho \cdot r$

- π_b need to “cover” π
 - i.e., whenever $\pi(a|x) > 0$, we need $\pi_b(a|x) > 0$

- A special case:
 - π is deterministic, and π_b is uniformly random ($\pi_b(a|x) \equiv 1/|A|$)
 - $\mathbb{1}[a = \pi(x)] \cdot r$
 - $\frac{1}{|A|} \cdot r$
 - only look at actions that match what π wants to take, and discard other data points
 - If match, $\rho = |A|$; mismatch: $\rho = 0$

- On average: only $1/|A|$ portion of the data is useful
- Variance of ρ is $O(|A|)$
A note about using IS

• We know that shifting rewards do not matter (for planning purposes) for fixed-horizon problems
• However, when you apply IS, shifting rewards do impact the variance of the estimator
• Special case:
 • deterministic π, uniformly random π_b
 • reward is deterministic and constant: regardless of (x,a), reward is always 1 (without any randomness)
• We know the value of any policy is 1
• On-policy MC has 0 variance
• IS still has high variance!
A note about using IS

• Where does variance come from?
 \[\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{1}[a(i) = \pi(x(i))]}{1/|A|} \cdot r(i) = \sum_{i=1}^{n} \frac{\mathbb{1}[a(i) = \pi(x(i))]}{n/|A|} \cdot r(i) \]
 \[= \frac{1}{n/|A|} \sum_{i:a(i)=\pi(x(i))} r(i) \]

• Find all “matched” data points, sum their rewards, then...

• normalize by the expected # matched data points \(n/|A| \)

• You might think we should normalize by the actual # matched data points observed in data...

• This is what weighted IS does (not required)

• Generally a biased (but consistent) estimator, but much lower variance in some cases
Example Application: Off-policy TD(0)

• Recall that TD(0) is on-policy
• How to derive its off-policy version?
• Data: \((s, a, r, s')\) where \(a \sim \pi_b(s)\), but we want to learn \(V^\pi\)
• TD(0) target: \(r + \gamma V(s')\) => learns \(V^\pi_b\)
• Off-policy TD(0) target: \(\frac{\pi(a|s)}{\pi_b(a|s)}(r + \gamma V(s'))\)
Multi-step IS in MDPs

• Data: trajectories starting from $s_1 \sim \mu$ using π_b (i.e., $a_t \sim \pi_b(s_t)$)

\begin{equation}
\{(s^{(i)}_1, a^{(i)}_1, r^{(i)}_1, s^{(i)}_2, \ldots, s^{(i)}_H, a^{(i)}_H, r^{(i)}_H)\}_{i=1}^n
\end{equation}

(for simplicity, assume process terminates in H time steps)

• Want to estimate $V^\pi := \mathbb{E}_{s \sim \mu}[V^\pi(s)]$

• Same idea as in bandit: apply IS to the entire trajectory
Application in MDPs

- The data point is $\tau := (s_1, a_1, r_1, \ldots, s_H, a_H, r_H)$
- The function of interest is $\tau \mapsto \sum_{t=1}^{H} \gamma^{t-1}r_t$
- Let the distribution of trajectory induced by π be $p(\tau)$
- Let the distribution of trajectory induced by π_b be $q(\tau)$
- IS estimator: $\frac{p(\tau)}{q(\tau)} \cdot \sum_{t=1}^{H} \gamma^{t-1}r_t$
- Write down the densities (assume deterministic reward for simplicity)
 - $p(\tau) = \mu(s_1) \cdot \pi(a_1 | s_1) \cdot P(s_2 | s_1, a_1) \cdot \pi(a_2 | s_2) \cdots P(s_H | s_{H-1}, a_{H-1}) \cdot \pi(a_H | s_H)$
 - $q(\tau) = \mu(s_1) \cdot \pi_b(a_1 | s_1) \cdot P(s_2 | s_1, a_1) \cdot \pi_b(a_2 | s_2) \cdots P(s_H | s_{H-1}, a_{H-1}) \cdot \pi_b(a_H | s_H)$
 - Let $\rho_t = \frac{\pi(a_t | s_t)}{\pi_b(a_t | s_t)}$, then $\frac{p(\tau)}{q(\tau)} = \prod_{t=1}^{H} \rho_t =: \rho_{1:H}$
Examine the special case again

- π is deterministic, and π_b is uniformly random ($\pi_b(a \mid x) \equiv 1/|A|$)

 \[
 \rho_t = \frac{\mathbb{I}[a_t = \pi(s_t)]}{1/|A|}
 \]

- only look at trajectories where all actions happen to match what π wants to take

 - If match, $\rho = |A|^H$; mismatch: $\rho = 0$

- On average: only $1/|A|^H$ portion of the data is useful

 - (When state space is unboundedly large, can prove that $|A|^H$ is inevitable; a version of “curse of horizon” in RL)

- When horizon is long, mostly applied when π and π_b are close to each other
An obvious improvement: step-wise IS

• “trajectory-wise” IS: $\rho_{1:H} \left(\sum_{t=1}^{H} \gamma^{t-1} r_t \right)$

• Idea: estimate the expected reward for each time step t, and then add them up
 • i.e., $v^\pi = \sum_{t=1}^{H} \gamma^{t-1} \mathbb{E}[r_t | s_1 \sim \mu, \pi]$

• When estimating $\mathbb{E}[r_t | s \sim \mu, \pi]$, we know that decisions made after time step t are irrelevant; truncate at time step t

• Improved estimator: $\sum_{t=1}^{H} \gamma^{t-1} \cdot \rho_{1:t} \cdot r_t$

• Equivalent to trajectory-wise IS when intermediate rewards are all 0