Algorithms for control
reading: Sutton & Barto, Chap 10
Policy Iteration from data

• We have seen how to learn V^π from data (TD)

• If we can learn Q^π, then we can do control (policy optimization) by running policy iteration

• How to learn Q^π? similar idea

• Bellman eq for Q^π: $Q^\pi(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[Q^\pi(s', \pi(s'))]

• Given $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ where all actions are taken according to π, update rule for learning Q^π: “SARSA”

$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$

• Do you need a_{t+1}? check out: expected Sarsa.

• In TD (for learning V^π), we require that each state is visited sufficiently often

• Similarly, here we require that each state-action pair is visited sufficiently often

• π must be stochastic! (so we cannot run PI exactly)
SARSA with epsilon-greedy policy

- \(Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)) \)
- Take epsilon-greedy policy w.r.t the current Q-estimate
 - At each time step \(t \), with probability \(\epsilon \), choose \(a_t \) from the action space uniformly at random. otherwise, \(a_t = \arg\max_a Q(s_t, a) \)
- Greedy part: “no-wait” version of policy improvement. Take greedy action w.r.t. \(Q \) every time step!
 - the policy being evaluated is constantly changing
 - “\(\epsilon \)-greedy policy” is not a fixed policy
- \(\epsilon \) part: make sure to explore all actions
- Precisely speaking, this is SARSA(0)
 - Can be extended to SARSA(\(\lambda \)) just as TD
Does SARSA converge to optimal policy?

- The epsilon part can prevent convergence!
- The cliff example (pg 108 of Sutton & Barto)
 - Deterministic navigation, high penalty when falling off the cliff
 - Optimal policy: walk near the cliff
 - Unless epsilon is super small, SARSA will avoid the cliff
- Will need to reduce ε over time—but small ε does not sufficiently explore, and Q-value estimates converge slower
SARSA with epsilon-greedy policy

- ϵ-greedy can be replaced by softmax: chooses action a with probability $\frac{e^{Q(s_t,a)/T}}{\sum_{a'} e^{Q(s_t,a')/T}}$, here T is temperature and needs to decrease over time (playing a role similar to ϵ in ϵ-greedy)
- Can use other stochastic policy that assigns most probability to the greedy action and explore all other actions at the same time
- Exercise: derive SARSA with function approximation
Q-learning

- We’ve seen how to derive a control algorithm (SARSA) based on the idea of policy iteration (or Bellman eq. for policy eval)
- How about value iteration (Bellman optimality eq.)?

\[Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim p(s,a)} [\max_{a'} Q^*(s', a')] \]

- Update rule:
 \[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)) \]

- Algorithms for control always have a “max” somewhere
 - the max in Q-learning is explicit in the update rule
 - Exercise: where is the “max” in SARSA?
 \[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)) \]
Q-learning

• Q-learning does not specify how a_t should be taken
 • Q-learning is off-policy: how we take actions have nothing to do with our current Q-estimate (or its greedy policy)
 • Learning rule is completely disentangled from the exploration rule (how to take actions during data collection). Explore however you want. “Behavior policy”
 • e.g., uniformly random action, or ϵ-greedy (here you do not need to reduce ϵ)

• Exercise: think about how Q-learning behaves in the cliff example
Connection between Q-learning and SARSA

• Expected sarsa:
\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, \pi(s_{t+1})) - Q(s_t, a_t)) \]

• recall that when \(\pi \) is stochastic, \(Q(s, \pi(s)) := \mathbb{E}_{a \sim \pi(s)}[Q(s, a)] \)

• Expected sarsa can be run off-policy!
 • Sarsa needs to be on-policy because we use \(a_{t+1} \) from data; this action needs to be consistent with \(\pi \) according to Bellman equation
 • If we replace it with the expectation (i.e., “imagined” action that is not actually taken in the environment), it removes any restriction on the behavior policy
 • (Insight due to Rich Sutton): Q-learning is a special case of expected Sarsa! Which policy are we evaluating?
Exercise: Multi-step Q-learning?

- Does the target \(r_t + \gamma r_{t+1} + \gamma^2 \max_{a'} Q(s_{t+2}, a') \) work? If not, why?
 - Consider the expected target conditioned on \(s_t \). Express it using standard Bellman update operators.
 - Give away: the expected target is \((\mathcal{T}^\pi(\mathcal{T}Q))(s_t, a_t)\), where \(\pi \) is behavior policy.
Q-learning with experience replay

• So far most algorithms we see are “one-pass”
 • i.e., use each data point once and discard them
 • # updates = # data points
• Concern 1: We need many updates for optimization to converge. Can we separate optimization from data collection?
• Concern 2: Need to reuse data if sample size is limited
• Q-learning as an example: suppose we are given a bag of \((s, a, r, s’)\) tuples and we cannot collect further data, what to do?
 • Sample (with replacement) a tuple randomly from the bag, and apply the Q-learning update rule.
 • # updates >> # data points
• Converges with appropriate learning rate
 • Guess what it converges to?
 • Model-based RL!
Q-learning with function approximation

• As before, we first derive the batch version
• Approximate Q^* using a (parameterized) function class \mathcal{F}
• Want to approximate Bellman update operator using data (a bag of (s, a, r, s') tuples)
• Fitted Q-Iteration (FQI):
 $$f_{k+1} \leftarrow \arg \min_{f_\theta \in \mathcal{F}} \sum_{(s,a,r,s')} (f_\theta(s, a) - r - \gamma \max_{a'} f_k(s', a'))^2$$
• Q-learning with function approximation
 $$\theta \leftarrow \theta - \alpha \cdot (f_\theta(s, a) - r - \gamma \max_{a'} f_\theta(s', a')) \nabla f_\theta(s, a)$$
• Exercise: this is Q-learning when using tabular function class
• Similar to TD, we only take gradient on $f_\theta(s, a)$ and ignore $f_\theta(s', a')$, because the latter is treated as a constant (it plays the role of f_k)
 • That’s why we don’t worry about the max (which is indifferentiable)
Quick Recap of the TD Part

1. Write down the Bellman up op for the thing you want to learn
 - e.g., \(Q_{k+1} \leftarrow T^\pi Q_k \) if we want to learn \(Q^\pi \)

2. Write down the detailed equation for a single \(s \) (or \((s,a) \))
 - \(Q_{k+1}(s,a) \leftarrow R(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)}[Q_k(s', \pi(s'))] \)

3. Replace the expectations with their sampled version to form the target (assuming data is \((s, a, r, s', a')\))
 - target: \(r + \gamma Q(s', \pi(s')) \) (expected Sarsa)
 - alternative target: \(r + \gamma Q(s', a') \) if on-policy \((a' \sim \pi(s'))\)

4. Online tabular ver: Plug into the template
 - \(Q(s,a) \leftarrow Q(s,a) + \alpha(\text{target} - Q(s,a)) \)

5. Batch function approximation ver: run least sq regression on
 - \(\{(s,a) \mapsto \text{target}\} \)
Quick Recap of the TD Part

Another example: TD(0)

1. Write down the Bellman up op for the thing you want to learn
 • \(V_{k+1} \leftarrow \mathcal{T}_\pi V_k \)

2. Write down the detailed equation for a single \(s \) (or \((s,a)\))
 • \(V_{k+1}(s) \leftarrow R(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s,\pi(s))}[V_k(s')] \)

3. Replace the expectations with their sampled version to form the target (assuming data is \((s, a, r, s')\))
 • target: \(r + \gamma V(s') \)
 • Be careful! This is only a sampled version of above if on-policy \((a \sim \pi(s))\)
 • Difference between learning \(V \) and \(Q \): learning \(V^\pi \) has to be on-policy (for now), but learning \(Q^\pi \) can be easily off-policy (expected sarsa)