Value Prediction with Function Approximation

Reading: Algs for RL (Szepesvári), Sec 3.2
Generalization for value prediction

- Major limitation of tabular RL: does not scale to large state space
 - most methods require that we run into the same state multiple times
 - when the state space is large, you might not see the same state even twice!
- In other words: sample complexity scales with $|S|$
- need generalization
- For value prediction problem, generalization requires that we have some prior knowledge about the form the value function
 - linear function approximation: design features $\phi(s) \in \mathbb{R}^d$ ("featurizing states"), and approximate $V^\pi(s) \approx \theta^T \phi(s)$
 - only unknown: θ. d unknowns vs $|S|$ unknowns!
Example: linear function approximation for tetris

- An example featurization:
 - let the height of the pile in i-th column be the i-th feature
 - dimensionality of feature = #columns
 - (probably doesn’t work; just an example)
- Feature engineering requires a lot of prior knowledge, domain insights, and trial and error, just as in supervised learning!
Monte-Carlo Value Prediction

• Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return

• Collect $\{(s_i, G_i)\}$ pairs

• Least square regression: $\min_\theta \frac{1}{n} \sum_{i=1}^{n} (\theta^T \phi(s_i) - G_i)^2$

• Why this works?
 • Assume $\{(s_i, G_i)\}$ are i.i.d., let (s, G) be variables equal in distribution
 • The expected version of the objective: $\min_\theta \mathbb{E}_{s, G}[(\theta^T \phi(s) - G)^2]$
 • If we do not restrict ourselves to linear functions, the function that minimizes this objective is $s \mapsto \mathbb{E}[G | s]$ ($= V^\pi(s)$)
 • If true $V^\pi(s)$ happens to take linear form, the regression will find it in the limit (of infinite data)
 • Finite sample regime: bias & variance trade-off
Monte-Carlo Value Prediction

• The same idea applies to non-linear value function approximation
• More generally & abstractly, think of function approximation as searching over a restricted function space, which is a set whose members are functions that map states to real values.
• Function space of linear value function approximation:
 \[\mathcal{F} = \{ V_\theta : \theta \in \mathbb{R}^d \}, \text{ where } V_\theta(s) = \theta^\top \phi(s) \]
 • typically only a small subset of all possible functions
 • Using “all possible functions” = tabular!
 • Equivalently, tabular MC value prediction can be recovered by choosing \(\phi \) as the identity features
 \[\phi(s) = \{ \mathbb{1}[s = s'] \}_{s' \in S} \]
• \[\min_{V_\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (V_\theta(s_i) - G_i)^2 \]
• Plug in any function approximator of your choice
• SGD: uniformly sample \(i \) and \(\theta \leftarrow \theta - \alpha \cdot (V_\theta(s_i) - G_i) \cdot \nabla V_\theta(s_i) \)
TD(0) with function approximation

- tabular: \(V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t)) \)
- When we update \(V(s_t) \), the target is \(r_t + \gamma V(s_{t+1}) \)
- Batch version of the algorithm: one Bellman update can be approximated (using all data) as
 \[
 V_{k+1} \leftarrow \arg \min_{V_\theta \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \left(V_\theta(s_t) - r - \gamma V_k(s_{t+1}) \right)^2
 \]
 - Sometimes called LSTD (esp. with linear func approx)
- SGD + “no-wait”: \(\theta \leftarrow \theta - \alpha \cdot (V_\theta(s_t) - r - \gamma V_\theta(s_{t+1})) \cdot \nabla V_\theta(s_t) \)
- When using linear function approximation \(V_\theta(s) = \phi(s)^T \theta \), we have
 \(\theta \leftarrow \theta - \alpha \cdot (\phi(s_t)^T \theta - r - \gamma \phi(s_{t+1})^T \theta) \cdot \phi(s_t) \)
- When using chain rule, we only take gradient on \(V_\theta(s_t) \) and ignore \(V_\theta(s_{t+1}) \); the latter is treated as a constant (it plays the role of \(V_k \))
What if…? (not required)

- What happens if we also differentiate $V_\theta(s_{t+1})$?
- This corresponds to $\arg\min_{V_\theta \in \mathcal{F}} \sum_{(s,r,s')} (V_\theta(s) - r - \gamma V_\theta(s'))^2$
 - no iteration anymore; a clean optimization objective
 - (most RL algorithms with bootstrapped target do not have a fixed optimization objective; objective changes over time)
- Assume for simplicity that, each data point is generated by
 (1) sampling s i.i.d. from some exploratory distribution, and
 (2) generating r and s' conditioned on $(s, \pi(s))$
- Replacing empirical objective with the population version, the objective becomes $\mathbb{E}_{s,r,s'}[(V_\theta(s) - r - \gamma V_\theta(s'))^2]$
What if…? (not required)

- $E_{s,r,s'}[(V_\theta(s) - r - \gamma V_\theta(s'))^2]$ can be decomposed into two terms
 - First term: $E_s[(V_\theta(s) - (\mathcal{T}\pi V_\theta)(s))^2]$
 - This is good! measures how much V_θ violates Bellman eq
 - A version of Bellman error $\|V - \mathcal{T}\pi V\|$
 - Optional exercise: bounding $\|V - V^\pi\|_\infty$ using $\|V - \mathcal{T}\pi V\|_\infty$
 - Second term: $\gamma^2E_s[\text{Var}_{s',s,\pi(s)}[V_\theta(s')]]$
 - (assumes deterministic rewards)
 - This is bad! An additional term that penalizes functions that has large variance w.r.t. random state transitions
 - Special case: 0 when environment is deterministic
 - So it’s actually a sensible algorithm for deterministic environments, but doesn’t work when stochasticity is significant
Resolutions (not required)

- If we have a simulator…
 - For each s in data, draw another independent state transition
 - Minimize objective $\mathbb{E}[(V_\theta(s) - r - \gamma V_\theta(s'_A))(V_\theta(s) - r - \gamma V_\theta(s'_B))]$
 - “Double sampling” and Baird’s residual algorithm (Bellman residual minimization)
 - Exercise: do you need to double sample the reward if reward is stochastic?
 - The conditional variance term is eliminated by double sampling
- If we can only draw 1 next-state (as with any natural data generation process)…
 - Estimate the conditional variance term and subtract from the objective
 - A minimax formulation (not covered in this course)
 - For further readings, see 598 slides on FQI.
Convergence?

• TD with function approximation can diverge in general
• Is it because of…
 • Randomness in SGD?
 • Nope. Even the batch version doesn’t converge.
 • Sophisticated, non-linear func approx?
 • Nope. Even linear doesn’t converge.
• That our function class does not capture V^π?
 • Nope. Even if V^π can be exactly represented in the function class ("realizable"), it still does not converge.

😢
2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x_1, x_2, 1-d features for the two states: $f_{x_1} = 1, f_{x_2} = 2$. Linear Function approximation with $\hat{V}_\theta(x) = \theta f_x$.

\[
\theta_k := \arg \min_{\theta} \frac{1}{2} (\theta - \text{target}_1)^2 + (2\theta - \text{target}_2)^2
\]
\[
= \arg \min_{\theta} \frac{1}{2} (\theta - \gamma \theta^{k-1} f_{x_2})^2 + (2\theta - \gamma \theta^{k-1} f_{x_2})^2
\]
\[
= \arg \min_{\theta} \frac{1}{2} (\theta - \gamma 2\theta^{k-1})^2 + (2\theta - \gamma 2\theta^{k-1})^2
\]
\[
(\theta - \gamma 2\theta^{k-1}) + 2(2\theta - \gamma 2\theta^{k-1}) = 0 \Rightarrow 5\theta = 6\gamma \theta^{k-1}
\]
\[
\theta_k = \frac{6}{5} \gamma \theta_{k-1}
\]

This diverges if $\gamma \geq 5/6$.

credit: course notes from Shipra Agrawal
A simple example (finite horizon, $\gamma=1$)

Dataset $D = \{(s, r, s')\}$ looks like:
\[
\{(1, 0, 2), (2, 0, 3), \ldots, (10, 1, \text{end}), \ldots, (10, 0, \text{end})\}
\]

Iter #1: Data: $(10, 1, \text{end}), \ldots, (10, 0, \text{end})$ \Rightarrow 0.501

Iter #2: Data: $(9, 0, 10)$ \Rightarrow $(9, 0 + 0.501)$ \Rightarrow 0.501 0.501

...

Iter #10: 0.501 0.501 0.501 0.501 ... 0.501 0.501 0.501 0.501

reward: $\text{Ber}(0.5)$
How things go wrong (w/ restricted class)

reward: \(\text{Ber}(0.5) \)

Iter #1:
Data: \((10, 1, \text{end}), \ldots, (10, 0, \text{end})\) \(\Rightarrow\) 0.501

Iter #2:
Data: \((9, 0, 10)\) \(\Rightarrow\) \((9, 0+0.501)\) \(\Rightarrow\) 0.502 0.501

Example given in Dann et al’18
Non-convergence

• Why things go wrong?
• Bellman update is a contraction, but here we have an additional projection step: \(V_{k+1} \leftarrow \Pi_F \mathcal{T}^\pi V_k \), projected Bellman update may NOT be a contraction (even with linear function approximation)
 • it is still a contraction in some special cases; will see
• In other words: in each iter, we solve a regression problem where the target function is \(T^\pi V \), where \(V \) can be arbitrary function in \(\mathcal{F} \)
 • The fact that \(V^\pi \in \mathcal{F} \) does not imply that \(T^\pi V \) is in \(\mathcal{F} \)! We may do quite poorly in the regression problem, and the iteration does not mimic a Bellman update
• Why tabular is fine? \(\mathcal{F} \) is fully expressive so \(T^\pi V \) is always in \(\mathcal{F} \).
 • Similarly for func approx, if we assume that \(\mathcal{F} \) is closed under \(T^\pi \), can prove some good properties of TD
• All alg based on bootstrapped targets suffer from this issue
 • Compare to the bahavior of Monte-Carlo