Tabular RL for Value Prediction
Reading: Algs for RL (Szepesvári), Sec 3.1
The Value Prediction Problem

• Given π, want to learn V^{π} or Q^{π}

• Also called policy evaluation, but much more difficult than estimating the expected return under initial state distribution (which is a scalar; here we want to learn a whole function)

• Why useful? Recall that if we know how to compute Q^{π}, we can run policy iteration
 • also useful in many other scenarios; will see examples later

• On-policy learning: data is generated by π

• Off-policy learning: data is generated by some other policy

• Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)

• When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)
Monte-Carlo Value Prediction

- If we can roll out trajectories from any starting state that we want, here is a simple procedure
- For each s, roll out n trajectories using policy π
 - For episodic tasks, roll out until termination
 - For continuing tasks, roll out to a length (typically $H = O(1/(1 - \gamma))$) such that omitting the future rewards has minimal impact ("small truncation error")
 - Let $\hat{V}^\pi(s)$ (will just write $V(s)$) be the average discounted return
- also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 - Keep generating trajectories until we have enough data points for each starting state
Implementing MC in an online manner

- The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
- Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
- For $i = 1, 2, \ldots$
 - Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return
 - Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$
 - Otherwise, $V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)} V(s_i) + \frac{1}{n(s_i)} G_i$
- Verify: at any point, $V(s)$ is always the MC estimation using trajectories starting from s available so far
\[V(s) = \begin{cases} \sum_{t=1}^{\infty} \gamma^{t-1} r_t & \text{if } n(s) = 0, \\ \frac{V(s)}{n(s)} + \frac{1}{n(s)} G^{(i)} & \text{if } n(s) > 0. \end{cases} \]

Focus on a particular state \(s \in S \).

- only care about traj. where \(s_{i}^{(i)} = s \). \(\Rightarrow i_1, i_2, \ldots, i_n \).

\[\begin{align*}
\text{n}(s) = 1 & \quad \Rightarrow \quad V(s) = G^{(i)} \\
\text{n}(s) = 2 & \quad \Rightarrow \quad V(s) = \frac{2-1}{2} \cdot V(s) + \frac{1}{2} G^{(i)} \\
\text{n}(s) = 3 & \quad \Rightarrow \quad V(s) = \frac{3-1}{3} \cdot V(s) + \frac{1}{3} (G^{(i)} + G^{(i_2)} + G^{(i_3)}) \\
\vdots & \\
\Delta &
\end{align*} \]
Implementing MC in an online manner

• More generally, $V(s_i) \leftarrow (1 - \alpha)V(s_i) + \alpha G_i$
 • α is known as the step size or the learning rate
 • in theory, convergence require sum of α goes to infinity while sum of α^2 stays finite; in practice, constant small α is often used
 • G_i is often called “the target”
 • The expected value of the target is what we want to update our estimate to, but since it’s noisy, we only move slightly to it
• Alternative expression: $V(s_i) \leftarrow V(s_i) + \alpha(G_i - V(s_i))$
 • Moving the estimate in the direction of error (= target - current)
• Can be interpreted as stochastic gradient descent
 • If we have i.i.d. real random variables v_1, v_2, \ldots, v_n, the average is the solution of the least-square optimization problem:
 $$\min_v \frac{1}{2n} \sum_{i=1}^{n} (v - v_i)^2$$
 • Stochastic gradient: $v - v_i$ (for uniformly random i)
\[
V_1, V_2, \ldots, V_n
\]
\[
\min_{\nu \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} (\nu - V_i)^2 = \mathcal{L}(\nu) = \sum_{i=1}^{n} \ell_i(\nu)
\]
\[
GD: \quad \nu \leftarrow \nu - \alpha \cdot \nabla_{\nu} \mathcal{L}(\nu)
\]
\[
SGD: \quad \text{sample } i \sim \{1, \ldots, n\},
\]
\[
\nu \leftarrow \nu - \alpha \cdot \nabla_{\nu} \ell_i(\nu)
\]
\[
\nabla_{\nu} \ell_i(\nu) = \frac{d}{d\nu} \left(\frac{1}{2n}(\nu - V_i)^2 \right) = \frac{1}{2n} \cdot 2(\nu - V_i)
\]
\[
= \frac{1}{n} (\nu - V_i).
\]
\[
\nu \leftarrow \nu - \alpha \cdot \frac{1}{n} (\nu - V_i).
\]
Every-visit Monte-Carlo

- Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?
- Let’s say we only have one single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$
 - (By “long trajectory”, we mean trajectory length $>>$ effective horizon $H = O(1/(1 - \gamma))$)
- On-policy: $a_t \sim \pi(s_t)$, where π is the policy we want to evaluate
- Algorithm: for each s, find all t such that $s_t = s$, calculate the discounted sum of rewards between time step t and $t+H$, and take average over them as $V(s_i)$
- Convergence requires additional assumption: the Markov chain induced by π is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity
Every-visit Monte-Carlo

- You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
- i.e., obtain a random return for each state visited on the trajectory
- What if a state occurs multiple times on a trajectory?
 - Approach 1: only the 1st occurrence is used (“first-visit MC”)
 - Approach 2: all of them are used (“every-visit MC”)
Alternative Approach: TD(0)

- Again, suppose we have a single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$ in a continuing task
- $\text{TD}(0)$: for $t = 1, 2, \ldots$, $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$
 - $\text{TD} = \text{temporal difference}$
 - $r_t + \gamma V(s_{t+1}) - V(s_t)$: “TD-error”
- The same structure as the MC update rule, except that we are using a different target here: $r_t + \gamma V(s_{t+1})$
- Often called “bootstrapped” target: the target value depends on our current estimated value function V
- Conditioned on s_t, what is the expected value of the target (taking expectation over the randomness of r_t, s_{t+1})?
 - It’s $(T^\pi V)(s_t)$
\[V(s_t) \leftarrow V(s_t) + \alpha \left(\frac{R(s_{t+1}) - V(s_t)}{\Delta} \right) \]

MC: \(H = O(\frac{1}{d}) \) "target".

\[\Gamma_t \leftarrow r_t, s_{t+1}, a_{t+1}, \ldots \]

\[V^*(s_t) = \mathbb{E} \left[\sum_{t' = t}^{\infty} \gamma^{t' - t} r_{t'} \mid s_t \right] \]
Understanding TD(0)

- $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$
- Imagine a slightly different procedure
 - Initialize V and V' arbitrarily
 - Keep running $V'(s_t) \leftarrow V'(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V'(s_t))$
 - Note that only V' is being updated; V doesn't change
 - What's the relationship between V and V' after long enough?
 - $V' = T^\pi V$! We’ve completed 1 iter of VI for solving V^π
 - Copy V' to V, and repeat this procedure again and again
- TD(0): almost the same, except that we don’t wait. Copy V' to V after every update!
- (Algorithms that “wait” actually have a come back in deep RL!)
- Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)
TD(0) vs MC

- TD(0) target: $r_t + \gamma V(s_{t+1})$
- MC target: $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$
- MC target is unbiased: expectation of target is the $V^\pi(s)$
- TD(0) target is biased (w.r.t. $V^\pi(s)$): the expected target is $(T^\pi V)(s)$
 - Although the expected target is not V^π, it's closer to V^π than where we are now (recall that T^π is a contraction)
- On the other hand, TD(0) has lower variance than MC
- Bias vs variance trade-off
- Also a practical concern: when interval of a time step is too small (e.g., in robotics), $V(s_t)$ and $V(s_{t+1})$ can be very close, and their difference can be buried by errors (error compounding over time)
TD(\(\lambda\)): Unifying TD(0) and MC

- 1-step bootstrap (=TD(0)): \(r_t + \gamma V(s_{t+1})\)
- 2-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})\)
- 3-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3})\)
- ...

- \(\infty\)-step bootstrap (=MC=TD(1)): \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots\)

- n-step bootstrap: as n increases, more variance, less bias
- Exercise: what’s the expected target in n-step bootstrap? \((T^{\pi})^n V\)
- TD(\(\lambda\)): weighted combination of n-step bootstrapped target, with weighting scheme \((1 - \lambda)\lambda^{n-1}\)
 - \(\lambda = 0\): only n=1 gets full weight. TD(0)
 - limit \(\lambda \to 1\): (almost) MC, see pg 24 of Szepesvári
 - “forward view” of TD(\(\lambda\))
TD(\(\lambda\)): Unifying TD(0) and MC

- Why the choice of \((1 - \lambda)\lambda^{n-1}\)?
 - Enables efficient online implementation
 - “Backward view” of TD(\(\lambda\))

Algorithm 3 The function that implements the tabular TD(\(\lambda\)) algorithm with replacing traces. This function must be called after each transition.

```python
def TDLAMBDA(X, R, Y, V, z):
    \textbf{Input}: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces
    1: \(\delta \leftarrow R + \gamma \cdot V[Y] - V[X]\)
    2: \textbf{for all } x \in \mathcal{X} \textbf{ do}
        3: \(z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]\)
        4: \textbf{if } X = x \textbf{ then}
            5: \(z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]\)
        6: \textbf{end if}
    7: \(V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]\)
    8: \textbf{end for}
    9: \textbf{return} (V, z)
```

- Their X is our \(s_t\)
- Their Y is our \(s_{t+1}\)
- \(\delta\) is the standard TD error (1-step)
- \(z\) is called the eligibility trace
- Every step we update at all states (TD(0) only updates V at the current state \(s_t\))

- This code is the improved version with replacing traces; the original version has the red term
Equivalence between backward and forward view

- Will show in a simplified case
- An infinite trajectory, initial state s_1 only appears once, all updates are postponed til the end and "patched" together
- calculate the update for $V(s_1)$ according to the two views
- Forward view: (learning rate α omitted in all updates)
 - $(1 - \lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1))$
 - $(1 - \lambda)\lambda \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) - V(s_1))$
 - $(1 - \lambda)\lambda^2 \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) - V(s_1))$, and so on
- Backward view:
 - $1 \cdot (r_1 + \gamma V(s_2) - V(s_1))$
 - $\lambda \gamma \cdot (r_2 + \gamma V(s_3) - V(s_2))$
 - $\lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) - V(s_3))$, and so on

```
1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$
2: for all $x \in \mathcal{X}$ do
3:     $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
4:     if $X = x$ then
5:         $z[x] \leftarrow 1$
6:     end if
7:     $V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]$
```