Tabular RL for Value Prediction

Reading: Algs for RL (Szepesvári), Sec 3.1
The Value Prediction Problem

• Given π, want to learn V^π or Q^π

• Also called policy evaluation, but much more difficult than estimating the expected return under initial state distribution (which is a scalar; here we want to learn a whole function)

• Why useful? Recall that if we know how to compute Q^π, we can run policy iteration
 • also useful in many other scenarios; will see examples later

• On-policy learning: data is generated by π

• Off-policy learning: data is generated by some other policy

• Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)

• When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)
Monte-Carlo Value Prediction

- If we can roll out trajectories from any starting state that we want, here is a simple procedure
- For each s, roll out n trajectories using policy π
 - For episodic tasks, roll out until termination
 - For continuing tasks, roll out to a length (typically $H = O(1/(1 - \gamma))$) such that omitting the future rewards has minimal impact (“small truncation error”)
 - Let $\hat{V}\pi(s)$ (will just write $V(s)$) be the average discounted return
- also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 - Keep generating trajectories until we have enough data points for each starting state
Implementing MC in an online manner

• The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
• Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
• For $i = 1, 2, \ldots$
 • Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i, and let G_i be the (random) discounted return
 • Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$
 • Otherwise, $V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)} V(s_i) + \frac{1}{n(s_i)} G_i$
• Verify: at any point, $V(s)$ is always the MC estimation using trajectories starting from s available so far
2mit state distribution do ᵃᵢ ᵃᵢ do(s) ≥ 0.

\[n(s) \leftarrow 0 \quad \forall s \]

For \(i = 1, 2, \ldots \):

\[s^{(i)}_1 \sim d_0, \quad a^{(i)}_1 \sim \pi(s^{(i)}_1), \quad r^{(i)}_1 = R(s^{(i)}_1, a^{(i)}_1), \quad s^{(i)}_2 \sim P(s^{(i)}_2 | s^{(i)}_1, a^{(i)}_1) \ldots \]

\[G^{(i)} = \sum_{t=1}^{\infty} \gamma^{t-1} r^{(i)}_t \]

\[n(s^{(i)}_1) \leftarrow n(s^{(i)}_1) + 1 \]

\[V(s^{(i)}_1) \leftarrow \begin{cases} \frac{n(s^{(i)}_1)}{n(s^{(i)}_1)} & \text{if } n(s^{(i)}_1) = 1 \\ V(s^{(i)}_1) + \frac{1}{n(s^{(i)}_1)} G^{(i)} & \text{otherwise} \end{cases} \]

Focus on a particular state \(s \in S \).

Only care about traj. where \(s_1^{(i)} = s \rightarrow i_1, i_2, \ldots, i_n \).

\[n(s) = 1 \quad \rightarrow \quad V(s) \leftarrow G^{(i_1)} \leq \]

\[n(s) = 2 \quad \rightarrow \quad V(s) \leftarrow \frac{2-1}{2} \cdot V(s) + \frac{1}{2} G^{(i_2)} \]

\[\text{=} \quad \frac{1}{2} G^{(i_1)} + \frac{1}{2} G^{(i_2)} \leq \]

\[n(s) = 3 \quad \rightarrow \quad V(s) \leftarrow \frac{3-1}{3} \cdot V(s) + \frac{1}{3} \left(G^{(i_1)} + G^{(i_2)} + G^{(i_3)} \right) \leq \]

\[\sum \triangle \]
Implementing MC in an online manner

• More generally, $V(s_i) \leftarrow (1 - \alpha)V(s_i) + \alpha G_i$

 • α is known as the step size or the learning rate

 • in theory, convergence require sum of α goes to infinity while sum of α^2 stays finite; in practice, constant small α is often used

 • G_i is often called “the target”

 • The expected value of the target is what we want to update our estimate to, but since it’s noisy, we only move slightly to it

 • Alternative expression: $V(s_i) \leftarrow V(s_i) + \alpha(G_i - V(s_i))$

 • Moving the estimate in the direction of error (= target - current)

 • Can be interpreted as stochastic gradient descent

 • If we have i.i.d. real random variables v_1, v_2, \ldots, v_n, the average is the solution of the least-square optimization problem:
 $$\min_v \frac{1}{2n} \sum_{i=1}^{n} (v - v_i)^2$$

 • Stochastic gradient: $v - v_i$ (for uniformly random i)
$$\min_{\text{vec} \ V} \; \frac{1}{2n} \sum_{i=1}^{n} (v_i - v)^2 = \mathcal{L}(v) = \frac{1}{n} \sum_{i=1}^{n} l_i(v)$$

GD: \(v \leftarrow v - \alpha \cdot \nabla_v \mathcal{L}(v) \)

SGD: sample \(i \sim \{1, \ldots, n\} \)

\[v \leftarrow v - \alpha \cdot \nabla_v l_i(v) \]

\[\nabla_v l_i(v) = \frac{\partial}{\partial v} \left(\frac{1}{2n} (v - v_i)^2 \right) = \frac{1}{2n} \cdot 2(v - v_i) \]

\[= \frac{1}{n} (v - v_i). \]

\[v \leftarrow v - \alpha \cdot \frac{1}{n} (v - v_i). \]
Every-visit Monte-Carlo

• Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?

• Let’s say we only have one single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$
 • (By “long trajectory”, we mean trajectory length $>>$ effective horizon $H = O(1/(1 - \gamma))$)

• On-policy: $a_t \sim \pi(s_t)$, where π is the policy we want to evaluate

• Algorithm: for each s, find all t such that $s_t = s$, calculate the discounted sum of rewards between time step t and $t+H$, and take average over them as $V(s_i)$

• Convergence requires additional assumption: the Markov chain induced by π is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity
Every-visit Monte-Carlo

• You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
 • i.e., obtain a random return for each state visited on the trajectory
• What if a state occurs multiple times on a trajectory?
 • Approach 1: only the 1st occurrence is used (“first-visit MC”)
 • Approach 2: all of them are used (“every-visit MC”)

Alternative Approach: TD(0)

• Again, suppose we have a single long trajectory $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, s_4, \ldots$ in a continuing task

• TD(0): for $t = 1, 2, \ldots$, $V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t))$

 • TD = temporal difference

 • $r_t + \gamma V(s_{t+1}) - V(s_t)$: “TD-error”

• The same structure as the MC update rule, except that we are using a different target here: $r_t + \gamma V(s_{t+1})$

• Often called “bootstrapped” target: the target value depends on our current estimated value function V

• Conditioned on s_t, what is the expected value of the target (taking expectation over the randomness of r_t, s_{t+1})?

 • It’s $(T^\pi V)(s_t)$
\[\text{General Update Rule:} \quad V(S_t) \leftarrow V(S_t) + \alpha \left(\boxed{?} - V(S_t) \right) \]

Consequence: \(V \) move towards \(\mathbb{E} \left[\boxed{?} \mid S_t \right] \).

MC: \(\boxed{?} = \sum_{t'=t}^{t+H} \gamma^{t'-t} R_{t'} \)

\[\mathbb{E} \left[\boxed{?} \mid S_t \right] \approx V^\pi(S_t) \quad \text{(up to truncation error)} \]

TD(0): \(\boxed{?} = R_t + \gamma V(S_{t+1}) \), \quad \text{"one-step bootstrap target"} \]

\[\mathbb{E} \left[\boxed{?} \mid S_t \right] = \mathbb{E} \left[(T^\pi V)(S_t) \right] \]

\[= \mathbb{E}_{S_{t+1} \sim P(S_{t+1} \mid S_t, A_t)} \left[V(S_{t+1}) \right] \]
Understanding TD(0)

- \(V(s_t) \leftarrow V(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V(s_t)) \)
- Imagine a slightly different procedure
 - Initialize \(V \) and \(V' \) arbitrarily
 - Keep running \(V'(s_t) \leftarrow V'(s_t) + \alpha (r_t + \gamma V(s_{t+1}) - V'(s_t)) \)
 - Note that only \(V' \) is being updated; \(V \) doesn’t change
 - What’s the relationship between \(V \) and \(V' \) after long enough?
 - \(V' = \mathcal{T}^\pi V \)! We’ve completed 1 iter of VI for solving \(V^\pi \)
 - Copy \(V' \) to \(V \), and repeat this procedure again and again
- TD(0): almost the same, except that we don’t wait. Copy \(V' \) to \(V \)
 after every update!
 - (Algorithms that “wait” actually have a come back in deep RL!)
 - Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)

\[
V = V_0 \quad \text{after 1 iter: } V = \mathcal{T}^\pi V_0 \\
2 \text{ iter: } V = (\mathcal{T}^\pi)^2 V_0 \\
\infty \text{ iter: } V = (\mathcal{T}^\pi)^\infty V_0 \\
\overset{\text{fixed target}}{=} V^\pi \\
\]

\[
V(s) \text{ converges to } \mathbb{E}[\text{target}] (s) \\
\]

\[
V(s') = (\mathcal{T}^\pi V)(s) \\
\]
TD(0) vs MC

- TD(0) target: \(r_t + \gamma V(s_{t+1}) \)
- MC target: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \)
- MC target is unbiased: expectation of target is the \(V^\pi(s) \)
- TD(0) target is biased (w.r.t. \(V^\pi(s) \)): the expected target is \((T^\pi V)(s) \)
 - Although the expected target is not \(V^\pi \), it's closer to \(V^\pi \) than where we are now (recall that \(T^\pi \) is a contraction)
- On the other hand, TD(0) has lower variance than MC
- Bias vs variance trade-off
- Also a practical concern: when interval of a time step is too small (e.g., in robotics), \(V(s_t) \) and \(V(s_{t+1}) \) can be very close, and their difference can be buried by errors (error compounding over time)
TD(\(\lambda\)): Unifying TD(0) and MC

- 1-step bootstrap (=TD(0)): \(r_t + \gamma V(s_{t+1})\)
- 2-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})\)
- 3-step bootstrap: \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3})\)
- ...
- \(\infty\)-step bootstrap (=MC=TD(1)): \(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...\)

n-step bootstrap: as n increases, more variance, less bias

Exercise: what’s the expected target in n-step bootstrap? \((T^\pi)^n V\)

TD(\(\lambda\)): weighted combination of n-step bootstrapped target, with weighting scheme \((1 - \lambda) \lambda^{n-1}\)

- \(\lambda = 0\): only \(n=1\) gets full weight. TD(0)
- limit \(\lambda \to 1\): (almost) MC, see pg 24 of Szepesvári
 - “forward view” of TD(\(\lambda\)
TD(λ): Unifying TD(0) and MC

• Why the choice of \((1 - \lambda)\lambda^{n-1}\)?
• Enables efficient online implementation
• “Backward view” of TD(λ)

Algorithm 3 The function that implements the tabular TD(λ) algorithm with replacing traces. This function must be called after each transition.

function TDLAMBDADA(X, R, Y, V, z)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces

1: δ ← R + γ \cdot V[Y] - V[X]
2: for all \(x \in X\) do
 3: \[z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]\]
 4: if \(X = x\) then
 5: \[z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]\]
 6: end if
7: \[V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]\]
8: end for
9: return \((V, z)\)

• Their X is our \(s_t\)
• Their Y is our \(s_{t+1}\)
• \(\delta\) is the standard TD error (1-step)
• \(z\) is called the eligibility trace
• Every step we update at all states (TD(0) only updates \(V\) at the current state \(s_t\))

• This code is the improved version with replacing traces; the original version has the red term
Equivalence between backward and forward view

• Will show in a simplified case

• An infinite trajectory, initial state s_1 only appears once, all updates are postponed til the end and “patched” together

• calculate the update for $V(s_1)$ according to the two views

• Forward view: (learning rate α omitted in all updates)

 \[
 (1 - \lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1)) \\
 (1 - \lambda) \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) - V(s_1)) \\
 (1 - \lambda) \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) - V(s_1)), \text{ and so on}
 \]

• Backward view:

 \[
 1 \cdot (r_1 + \gamma V(s_2) - V(s_1)) \\
 \lambda \gamma \cdot (r_2 + \gamma V(s_3) - V(s_2)) \\
 \lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) - V(s_3)), \text{ and so on}
 \]

1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$
2: for all $x \in X$ do
3: $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
4: if $X = x$ then
5: $z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]$
6: end if
7: $V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]$

$TD(\lambda)$ target
Coeff of n_1: \[\sum_{n=1}^{\infty} (1-n)\lambda^{n-1} = 1. \]

\[r_2 = \gamma \sum_{n=1}^{\infty} (1-n)\lambda^{n-1} = \gamma \cdot \lambda \sum_{n=1}^{\infty} \lambda^{n-1} = \gamma \cdot \lambda. \]

\[V(s_2) = \gamma (1-n). \]

\[8 - \lambda \gamma = \gamma (1-n). \]