The Learning Setting
So far we have considered **planning**
- i.e., given MDP model, how to compute optimal policy
- More broadly, whenever the MDP model (i.e., reward & transition functions) is known, it is the planning setting

Learning: MDP model is unknown, but we are given/can collect data from the MDP (often in the form of \((s, a, r, s')\))

Defining a concrete learning **problem** involves many factors…
- Is data passively given (batch/offline/off-policy), or we can collect ourselves and decide how to act (online)?
- Is data a bag of 4-tuples, or are they in the form of trajectories?
- Are we interested in policy evaluation or optimization?
- …
RL: Planning or Learning?

- **Learning** can be useful even if the final goal is planning
 - esp. when $|S|$ is large and/or only blackbox simulator
 - e.g., AlphaGo, video game playing, simulated robotics
 - “Sampling-based planning”—what RL has been mostly about historically (despite the word “learning” in its name!)
 - Can run simulator to generate data indefinitely
 - Major concern: computational complexity

- **Learning** as a problem
 - e.g., adaptive medical treatment, dialog systems
 - Data is limited. Sample complexity (data efficiency) is as important as computational complexity
 - Additional concerns about e.g., safety
Simplest Setting: Monte-Carlo policy evaluation

- Given π, estimate $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$ (d_0 is initial state distribution)
- Alg outputs some scalar v; accuracy measured by $|v - J(\pi)|$
- Data: trajectories starting from $s_1 \sim d_0$ using π (i.e., $a_t = \pi(s_t)$)
 $\{(s_1^{(i)}, a_1^{(i)}, r_1^{(i)}, s_2^{(i)}, \ldots, s_H^{(i)}, a_H^{(i)}, r_H^{(i)})\}_{i=1}^n$
 (for simplicity, assume process terminates in H time steps)
- Estimator:
 $\frac{1}{n} \sum_{i=1}^n \sum_{t=1}^H \gamma^{t-1} r_t^{(i)}$
- Guarantee: w.p. at least $1 - \delta$, $|v - J(\pi)| \leq \frac{R_{\max}}{1 - \gamma} \sqrt{\frac{1}{2n} \ln \frac{2}{\delta}}$
 - Direct consequence of Hoeffding’s inequality (not required)
 - Depends on value range & sample size
 - No dependence on anything else, e.g., state/action spaces
What does “Monte-Carlo” mean?

- Suppose we want to know the value of $\mathbb{E}_{x \sim p}[f(x)]$

- Monte-Carlo estimate: draw x_1, x_2, \ldots, x_n i.i.d. from p; estimator: $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$

- Beauty of MC: if the value f takes has bounded range, the approximation guarantee of MC has no dependence on the cardinality of the X space

- Mapping things to policy evaluation: x is a trajectory, f maps the trajectory to the discounted return, p is the distribution of the trajectory determined by the MDP, the initial state distribution, and the policy

- In RL, Monte-Carlo generally means forming estimates by rolling out trajectories, typically without using concepts from Bellman equations
Turning Monte-Carlo policy evaluation into a policy optimization algorithm

- Want to optimize $J(\pi) := \mathbb{E}_{s \sim d_0}[V^\pi(s)]$
- have a set of candidate policies
- Estimate the expected return of each candidate, pick the best
- Limitation: can only evaluate a small number of policies
 - 0-th order optimization heuristics can be applied (e.g., CMA-ES for RL; look up the term and do some readings if you are interested); typically no guarantees
- Even if the MDP has finite & small state/action spaces (“tabular RL”), finding optimal policy using this strategy takes exponential sample/computational complexity
Model-based RL with a sampling oracle

- Assume we can sample \(r \sim R(s, a) \) and \(s' \sim P(s, a) \) for any \((s, a) \)
- Collect \(n \) samples per \((s, a) \): \(\{(r_i, s'_i)\}_{i=1}^n \). Total sample size \(n |S \times A| \)
- Estimate an empirical MDP \(\hat{M} \) from data
 - \(\hat{R}(s, a) := \frac{1}{n} \sum_{i=1}^n r_i, \hat{P}(s' | s, a) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}[s'_i = s'] \)
 - i.e., treat the empirical frequencies of states appearing in \(\{s'_i\}_{i=1}^n \) as the true distribution
- Plan in the estimated model and return the optimal policy
- Guarantee (not required): to make sure that the optimal policy of \(\hat{M} \) is \(\epsilon \)-optimal in the true MDP with probability at least \(1 - \delta \), we need a total sample size of \(poly(|S|, |A|, 1/(1 - \gamma), 1/\epsilon, 1/\delta) \)
- Can be applied on an arbitrarily generated dataset; works as long as each \((s, a) \) has enough samples.
Model-based RL with a sampling oracle

• Useful as an efficient approximate planner for tabular MDPs with moderately large state spaces

• Exact value iteration: $O(|S|^2 |A|)$ computation per iteration

• With sampled data: $O(|S||A|n)$ per iteration
 • Note: you don’t even need to explicitly build \hat{M}!
 • Bellman update at (s,a): $\hat{R}(s,a) + \gamma \mathbb{E}_{s' \sim \hat{P}(s,a)}[\max_{a'} f(s', a')]$
 • equal to $\frac{1}{n} \sum_{i=1}^{n} (r_i + \gamma \max_{a'} f(s'_i, a'))$

• In practice, $n = 20$ is usually sufficient
 • Even if $|S|$ is much larger!
 • which means the transition distributions are estimated very poorly... but we can still find optimal policy, and this is backed up by theory (won’t be covered in this course)
Model-based RL with a sampling oracle

- Can also be applied to policy evaluation—in fact you can do almost everything given that you have a generative model of the world (though it’s approximate)
- Also known under the name “certainty-equivalence”
- Will switch gears to other methods, and mention connection later