Policy Gradient

(ref: notes on course website; not all contents in notes are covered in class)
Policy Gradient (PG)

- Given a class of parameterized policies π_θ, optimize

 $$v^{\pi_\theta} := \mathbb{E}_{s \sim \mu}[V^{\pi_\theta}(s)]$$

- We will often make the dependence of π_θ on θ implicit, i.e., when we write π we mean π_θ in this part of the course

- Simple idea: can run (stochastic) gradient descent if we can obtain (an unbiased estimate of) $\nabla_\theta v^{\pi_\theta}$

 - will abbreviate as ∇v^π

- Beautiful result: an unbiased estimate can be obtained from a single on-policy trajectory, without using knowledge of P and R of the MDP!

- Has a strong connection to IS

- “Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo method—it does not leverage Bellman equation
Why PG?

- RL methods can be categorized according to what we try to approximate: model-based RL, value-based RL, policy search
- Eventually we only care about a good policy!
- value-based RL is indirect (model-based even more)
- If a value function induces a good greedy policy, but the function itself severely violates Bellman equation, you won’t be able to find such a policy via value-based methods
- In other words, policy search is agnostic against misspecification of function approximation
 - Apart from difficulties in optimization, there is nothing that prevents policy search from finding the best policy in class
- Value- (and model-) based methods have their advantages—will come back later
Example of policy parametrization

- Linear + softmax:
 - Featurize state-action: $\phi : S \times A \rightarrow \mathbb{R}^d$
 - Policy: $\pi(a \mid s) \propto e^{\theta^T \phi(s,a)}$
- Recall that in SARSA we’ve also seen the softmax policy
- There we include a temperature parameter, $\pi(a \mid s) \propto e^{\theta^T \phi(s,a)/T}$
- Why the difference?
 - In TD, we want $\theta^T \phi(s,a) \approx Q^\pi(s,a)$. We don’t have the freedom to rescale it; i.e., if $\theta^T \phi(s,a) \approx Q^\pi(s,a)$, then $(2\theta)^T \phi(s,a) \neq Q^\pi(s,a)$.
 - We need an additional knob (T) to control the stochasticity of π
 - In PG, $\theta^T \phi(s,a)$ does not carry any meaning—it’s totally possible that eventually we find a θ but $\theta^T \phi(s,a) \neq Q^\pi_{\theta}(s,a)$!
 - That’s why we can absorb the temperature parameter in θ
 - Reflection of the agnosticity of PG
Derivation of PG

- Use $\tau := (s_1, a_1, r_1, \ldots, s_H, a_H, r_H)$ to denote a trajectory (episodic)
- Use $\tau \sim \pi$ as a shorthand for distribution induced by π
- Let $R(\tau) := \sum_{t=1}^{H} \gamma^{t-1} r_t$
- Ver 1: $\nabla v^\pi = \mathbb{E}_{\tau \sim \pi} [R(\tau) \sum_{t=1}^{H} \nabla \log \pi(a_t | s_t)]$
 - Will derive using a “MC”-style proof
- Ver 2: $\nabla v^\pi = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \eta, a \sim \pi(s)} [Q^\pi(s, a) \nabla \log \pi(a | s)]$
 - η^π is the normalized occupancy (from μ)
 - Possible implementation: (1) roll out $\tau \sim \pi$, (2) pick a random time step t w.p. $\propto \gamma^{t-1}$, (3) $(\sum_{t'=t}^{H} \gamma^{t'-1} r_t) \nabla \log \pi(a_t | s_t)$
 - Note that $\mathbb{E}[\sum_{t'=t}^{H} \gamma^{t'-1} r_t | s_t, a_t] = Q^\pi(s_t, a_t)$
 - Improvement: take expectation over step (2)
- Will derive using a “DP”-style proof
- Can also be derived using the MC-style proof for ver 1
Pros & Cons of PG, and beyond

- vanilla PG (“REINFORCE”) is fully on-policy, and it’s hard to reuse data
 - after each update step, the policy changes and we need rollout trajectories from the new policy
 - in practice, it suffers from noisy gradient estimate
- Blend PG with value-based method:
 - $\nabla v^\pi = \frac{1}{1 - \gamma^2} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[Q^\pi(s, a) \nabla \log \pi(a | s)]$
 - Instead of using MC estimate $\sum_{t=1}^{H} \gamma^{t-1}r_t$ for $Q^\pi(s_t, a_t)$, use an approximate value-function $\hat{Q}^\pi(s_t, a_t)$, often trained by TD
 - e.g., using expected Sarsa—can leverage previous (off-policy) data to learn $\hat{Q}^\pi(s_t, a_t)$
- “Actor-critic”: the parametrized policy is called the actor, and the value-function estimate is called the critic
Baseline in PG

- $\nabla v^\pi = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[Q^\pi(s, a) \nabla \log \pi(a \mid s)]$

- For any $f : S \to \mathbb{R}$, $\nabla v^\pi = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[(Q^\pi(s, a) - f(s)) \nabla \log \pi(a \mid s)]$
 - for any s, $\mathbb{E}_{a \sim \pi(s)}[f(s) \nabla \log \pi(a \mid s)] = f(s) \cdot \mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a \mid s)] = 0$
 - proof: $\mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a \mid s)] = \sum_a \pi(a \mid s) \nabla \log \pi(a \mid s)$
 $= \sum_a \nabla \pi(a \mid s) = \nabla \sum_a \pi(a \mid s) = \nabla 1 = 0$

- One choice: $f = V^\pi(s)$
 - $\nabla v^\pi = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[A^\pi(s, a) \nabla \log \pi(a \mid s)]$
 - recall that A is the advantage function
Comparing AC with Policy Iteration

- \[\nabla v^\pi = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi(a | s)] \]

- A different but related procedure: freeze \(\pi \), update the parameter of another policy \(\pi' \) (whose parameters are \(\theta' \)) by
 \[\theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi'(a | s)] \]

- gradient = 0 at \(\pi' = \pi_{Q^\pi} \) => policy iteration

- This can run into serious issues
 - Tabular PI theory assumes that we get \(\hat{Q}^\pi \) that is accurate for every single state-action pair
 - Simply unrealistic if problem is complex and we can only roll-out trajectories (instead of sweeping the entire state space)
 - in the middle of learning, part of the state space may be under-explored
 - at best we can hope \(\hat{Q}^\pi \) to be accurate under distribution of state space we have data for
Comparing AC with Policy Iteration

- \(\nabla v^\pi = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi(a | s)] \)

- A different but related procedure: freeze \(\pi \), update the parameter of another policy \(\pi' \) (whose parameters are \(\theta' \)) by

 \[
 \theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \eta^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi'(a | s)]
 \]

- gradient = 0 at \(\pi' = \pi_{Q^\pi} \) => policy iteration

- This can run into serious issues
 - (cont.) if \(\pi' \) visits new areas of states (and actions), \(\hat{Q}^\pi \) may be highly inaccurate in those states, and policy improvement guarantee no longer holds

- Perhaps better idea: move \(\pi' \) a little more but not too far from \(\pi \), so that their state occupancies are still similar.

- Theory: CPI [Kakade & Langford’02]

- Modern implementation & variants: TRPO, PPO, etc
RL Algorithms Landscape

Policy Optimization

- Policy Gradient
- DFO / Evolution
- Policy Iteration
- Value Iteration
- Q-Learning
- Actor-Critic Methods

Dynamic Programming

- Modified Policy Iteration
- Value Iteration

0-th order opt.

Slide Credit: Pieter Abbeel