Policy Gradient
Policy Gradient (PG)

• Given a class of parameterized policies \(\pi_\theta \), optimize
 \(J(\pi_\theta) := \mathbb{E}_{s \sim d_0}[V^{\pi_\theta}(s)] \)

• We will often make the dependence of \(\pi_\theta \) on \(\theta \) implicit, i.e.,
 when we write \(\pi \) we mean \(\pi_\theta \) in this part of the course

• Simple idea: can run (stochastic) gradient descent if we can obtain (an unbiased estimate of)
 \(\nabla_\theta J(\pi_\theta) \)

• will abbreviate as \(J(\pi) \)

• Beautiful result: an unbiased estimate can be obtained from a single on-policy trajectory, without using knowledge of \(P \) and \(R \) of the MDP!

• Has a strong connection to IS

• “Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo method—it does not leverage Bellman equation
Why PG?

- RL methods can be categorized according to what we try to approximate: model-based RL, value-based RL, policy search
- Eventually we only care about a good policy!
- value-based RL is indirect (model-based even more)
- If a value function induces a good greedy policy, but the function itself severely violates Bellman equation, you won’t be able to find such a policy via value-based methods
- In other words, policy search is agnostic against misspecification of function approximation
 - Apart from difficulties in optimization, there is nothing that prevents policy search from finding the best policy in class
- Value- (and model-) based methods have their advantages—will come back later
Example of policy parametrization

• Linear + softmax:
 • Featurize state-action: \(\phi : S \times A \to \mathbb{R}^d \)
 • Policy: \(\pi(a \mid s) \propto e^{\theta^T \phi(s,a)} \)

• Recall that in SARSA we’ve also seen the softmax policy
• There we include a temperature parameter, \(\pi(a \mid s) \propto e^{\theta^T \phi(s,a)/T} \)

• Why the difference?
 • In TD, we want \(\theta^T \phi(s, a) \approx Q^\pi(s, a) \). We don’t have the freedom to rescale it; i.e., if \(\theta^T \phi(s, a) \approx Q^\pi(s, a) \), then \((2\theta)^T \phi(s, a) \neq Q^\pi(s, a) \).
 • We need an additional knob (T) to control the stochasticity of \(\pi \)
 • In PG, \(\theta^T \phi(s, a) \) does not carry any meaning—it’s totally possible that eventually we find a \(\theta \) but \(\theta^T \phi(s, a) \neq Q^\pi_{\theta}(s, a) \! \)
 • That’s why we can absorb the temperature parameter in \(\theta \)
 • Reflection of the agnosticism of PG
Derivation of PG

- Use $\tau := (s_1, a_1, r_1, \ldots, s_H, a_H, r_H)$ to denote a trajectory (episodic)
- Use $\tau \sim \pi$ as a shorthand for distribution induced by π
- Let $R(\tau) := \sum_{t=1}^{H} \gamma^{t-1} r_t$
- Ver 1: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi}[R(\tau) \sum_{t=1}^{H} \nabla \log \pi(a_t | s_t)]$
 - Will derive using a “MC”-style proof
- Ver 2: $\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[Q^\pi(s, a) \nabla \log \pi(a | s)]$
 - d^π is the normalized occupancy (from d_0 as init distribution)
 - Possible implementation: (1) roll out $\tau \sim \pi$, (2) pick a random time step t w.p. $\propto \gamma^{t-1}$, (3) $\sum_{t' = t}^{H} \gamma^{t'-1} r_t \nabla \log \pi(a_t | s_t)$
 - Note that $\mathbb{E}[\sum_{t' = t}^{H} \gamma^{t'-1} r_t | s_t, a_t] = Q^\pi(s_t, a_t)$
 - Take expectation over step (2) gives an alternative form: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi}[\sum_{t=1}^{H} (\sum_{t' = t}^{H} \gamma^{t'-1} r_t) \nabla \log \pi(a_t | s_t)]$
 - Will derive using a “DP”-style proof; can also be derived using the MC-style proof for ver 1
Pros & Cons of PG, and beyond

• Standard PG is fully on-policy, and it’s hard to reuse data
 • after each update step, the policy changes and we need to generate MC trajectories from the new policy
• in practice, it suffers from noisy gradient estimate
• Blend PG with value-based method:
 • \[\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)} [Q^\pi(s, a) \nabla \log \pi(a \mid s)] \]
 • Instead of using MC estimate \[\sum_{t'=t}^{H} \gamma^{t'-1} r_t \] for \[Q^\pi(s_t, a_t) \], use an approximate value-function \[\hat{Q}^\pi(s_t, a_t) \], often trained by TD
 • e.g., using expected Sarsa—can leverage previous (off-policy) data to learn \[\hat{Q}^\pi(s_t, a_t) \]
 • “Actor-critic”: the parametrized policy is called the actor, and the value-function estimate is called the critic
Baseline in PG

- \(\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)} [Q^\pi(s, a) \nabla \log \pi(a \mid s)] \)
- For any \(f : S \to \mathbb{R} \), \(\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)} [(Q^\pi(s, a) - f(s)) \nabla \log \pi(a \mid s)] \)
 - for any \(s \), \(\mathbb{E}_{a \sim \pi(s)} [f(s) \nabla \log \pi(a \mid s)] = f(s) \cdot \mathbb{E}_{a \sim \pi(s)} [\nabla \log \pi(a \mid s)] = 0 \)
 - proof: \(\mathbb{E}_{a \sim \pi(s)} [\nabla \log \pi(a \mid s)] = \sum_a \pi(a \mid s) \nabla \log \pi(a \mid s) \\
 = \sum_a \nabla \pi(a \mid s) = \nabla \sum_a \pi(a \mid s) = \nabla 1 = 0 \)
- One choice: \(f = V^\pi(s) \)
 - \(\nabla J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)} [A^\pi(s, a) \nabla \log \pi(a \mid s)] \)
 - recall that \(A \) is the advantage function
Comparing AC with Policy Iteration

- $\nabla J(\pi) \approx \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi(a | s)]$

- A different but related procedure: freeze π, update the parameter of another policy π' (whose parameters are θ') by
 \[
 \theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s, a) \nabla \log \pi'(a | s)]
 \]

- gradient = 0 at $\pi' = \pi_{Q^\pi} =>$ policy iteration

- This can run into serious issues
 - Tabular PI theory assumes that we get \hat{Q}^π that is accurate for every single state-action pair
 - Simply unrealistic if problem is complex and we can only rollout trajectories (instead of sweeping the entire state space)
 - in the middle of learning, part of the state space may be under-explored
 - at best we can hope \hat{Q}^π to be accurate under distribution of state space we have data for
Comparing AC with Policy Iteration

- \(\nabla J(\pi) \approx \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s,a) \nabla \log \pi(a|s)] \)

- A different but related procedure: freeze \(\pi \), update the parameter of another policy \(\pi' \) (whose parameters are \(\theta' \)) by
 \[
 \theta' \leftarrow \theta' + \alpha \cdot \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi, a \sim \pi(s)}[\hat{Q}^\pi(s,a) \nabla \log \pi'(a|s)]
 \]

- gradient = 0 at \(\pi' = \pi_{Q^\pi} \) => policy iteration

- This can run into serious issues
 - (cont.) if \(\pi' \) visits new states, \(\hat{Q}^\pi \) may be highly inaccurate in those states, and policy improvement no longer holds

- Perhaps better idea: move \(\pi' \) a little more but not too far from \(\pi \), so that their state occupancies are still similar.

- Theory: CPI [Kakade & Langford’02]

- Modern implementations & variants: TRPO, PPO, etc
RL Algorithms Landscape

Policy Optimization

DFO / Evolution
Policy Gradients
Policy Iteration
Actor-Critic Methods
Dynamic Programming
modified policy iteration
Policy Iteration
Q-Learning
Value Iteration

0-th order opt.

policy search

value-based RL

Slide Credit: Pieter Abbeel