Algorithms for control
reading: Sutton & Barto, Chap 10

Policy lteration from data

We have seen how to learn V™ from data (TD)

It we can learn Q7, then we can do control (pollcy optimization) by
running policy iteration

How to learn Q™? similar idea

Bellman eq for Q™ Q"(s, a) =\B(s, a) + y[ES'Np(S,a ', TC(S')T\

C—

Given (s, ay, 11, si+1, ar+1) Where all actions are taken according to
7t, update rule for learning Q™: “SARSA” Z{
Q(st, it.) — Q(st, ay) + are + YQ(St41 ,Ej) - Q(s, ay))

* Do you need a:+1”? check out: expected Sarsa.

In TD (for learning V™), we require that each state is visited

sufficiently often \/rCS}‘ Q (C,T)

Similarly, here we require that each state-action pair is visited
sufficiently often

7t must be stochastic! (so we cannot run Pl exactly)

e R &T‘(S,aﬂ):@"’&f)(%)
@JKQHXS;): R.(3,0) 4 Ygsxmﬁ,q [Q_,Uf@)}

- E[\M— . —F(s’,g) [?,&j.
\@ Sy)g(/: 5.4 . EE leg [m \/qﬁ(s’, m)]

nw a'~7

2 2 L+ YREL)
= \[/ oo
@h(a e Blsay 0<<7+f@4 (S',)

U —
%—) ft,gi-ﬂ)) &
(Q (S%,04) €— Q(§+,0\+-)~L oe (Yt YQ (Sw,%}
Cected Suise @)

\/(5e) &« V/(8) +o<(\’++ Y \V(sha) — \/(%))

T
Q E— Q+ - Y+

\

SARSA with epsilon-greedy policy @ﬁ
,/’7

* Q(sy ar) < Q(s, a) + a(ry + YQ(St41, ate1) — Q(St, ay))
* Take epsilon-greedy policy w.r.t the current Q-estimate

* At each time step t, with probability €, choose a; from the action
space uniformly at random. otherwise, a;= argmax, Q(s;, a)

* Greedy part: “no-wait” version of policy improvement. Take
greedy action w.r.t. Q every time step! “‘f.

* the policy being evaluated is constantly changing
e “e-greedy policy” is not a fixed policy

e ¢ part: make sure to explore all actions

* Precisely speaking, this is SARSA(O)
* Can be extended to SARSA(MA) just as TD

Yes Thoat ¥ Qlsra,ap,)

-«

Does SARSA converge to optimal policy?

* The epsilon part can prevent convergence!

* The cliff example (pg 132 of Sutton & Barto)

* Deterministic navigation, high penalty when falling off the cliff

e Optimal policy: walk near the cliff

* Unless epsilon is super small, SARSA will avoid the cliff

* Will need to reduce € over time—but small € does not sufficiently

explore, and Q-value estimates converge slower

S

T he

Cliff

safe path

optimal path

SARSA with epsilon-greedy policy

* g-greedy can be repl
eQ(St,a)/T

ed by softmax: chooses action a with

probability

ere T is temperature and needs to

decrease qver fi aying a role similar to € in e-greedy)

e Can use other stochastic policy that assigns most probability to
the greedy action and explore all other actions at the same time

e Exercise: derive SARSA with function approximation

ﬂﬁ/ %Zm/maz‘we.
ﬂaﬁlﬁ) OC@Q@/\)/(

g 2)
&ﬁ ‘o @é(g,cz,)T 9 |

jcK « [1\7[((_' Q—Iearning(jj[/zs/a’)’ﬂ?‘L \KV‘«%()({S’/@/

<, 4
* We've seen how to derive a control algorithm (SARS based on

the idea of policy iteration (or Bellman eq. for policy’eval)

. Q7(s,a) =R(s,a) +yEg Psa[maXQ (s’
— R i

[A]

e Update. rule:
<— Q(St, ar) + ou{rt +ymax Q(sts1,a ,3 Q(st, at))
A

—

* Algorithms for control alvv'ew,shave a “max” somewhere
* the max in Q-learning is explicit in the update rule
* Exercise: where is the “max” in SARSA?

Q(st, ar) < Q(st, ar) + a(rt + YQ(Ste1, ae1) — Q(St,)

Q-learning

* Q-learning does not specify how a; should be taken

* Q-learning is off-policy. how we take actions have nothing to
do with our current Q-estimate (or its greedy policy)

* Learning rule is completely disentangled from the exploration
rule (how to take actions during data collection). Explore

however you want using a “behavior policy”

* e.g., uniformly random action, or e-greedy (here you do not

need to reduce €)

—

e Exercise: think about how Q-learning behaves in the cliff example

R

-1

S The Cliff

safe path

optimal path

Connection between Q-learning and SARSA-

\9, —
* Expected sarsg' Q(st, ar) < Q(st, ar) + a(ry + YQ(St1 g @

. recall that when 7t is stochastic; OQFs, 1) = Ear

* Expected sarsa can be run off-policy! Tz Tla

* Sarsa needs to be on-policy because we use a1 from data;

this action needs to be consistent with = according to Bellman
equation

* |f we replace it with the expectation (i.e., “imagined” action that
is not actually taken in the environment), it removes any
restriction on the behavior policy

* (Insight due to Rich Sutton): Q-learning is a special case of
expected Sarsa! Which pollcy are we evaluatjng?

@@W‘ Gifﬂ‘ XWLX (St a’)[ﬁ,%j
\ ——?= GTQ) Gra)

? &K/—Q))& A

E §~I-;a+J
. Does the target|r; + yreyq + y2max Q(sy2, a’){work? [T not, why?

a

Exercise: Multi-step Q-learni

* Consider the expected target conditioned on s, a; . Express it
using standard Bellman update operators

* (Give away: the expected target is (7T Q))(sy, a), where 1t is

behavior policy e
TPED)TT) - - 8,

(jralrf>§,) - Q(él‘()é' &(9,01)+
o (V4 ¥ o @(9’/&’)-(9(&0}

10

Q-learning with experience replay

So far most algorithms we see are “one-pass”
* |.e., use each data point once and discard them
* # updates = # data points

Concern 1: We need many updates for optimization to converge.
Can we separate optimization from data collection?

Concern 2: Need to reuse data if sample size is limited

Q-learning as an example: suppose we are given a bag of
(s, a, 1, s") tuples and we cannot collect further data, what to do?

Sample (with replacement) a tuple randomly from the bag, and
apply the Q-learning update rule.

* # updates >> # data points
Converges with appropriate learning rate
* Guess what it converges to”

* Model-based RL!

11

Q-learning with function approximation

* As before, we first derive the batch version

o Approximate Q* using a (parameterized) function class &

* Want to approximate Bellman update operator using data (a bag
of (s, a, r,s") tuples)

* Fitted Q-lteration (FQI):

it < argminges 3 o) (fols,) = 1 = y maxg fis’ a'))?

* Q-learning with function approximation
e 0 0—a-(fg(s,a) —r—ymaxfy(s,a’)) Vig(s, a)

a
* Exercise: this is Q-learning when using tabular function class

« Similar to TD, we only take gradient on fg(s, a) and ignore fg(s’, a’),
because the latter is treated as a constant (it plays the role of f)

QK — qka
(T Josg = EL 1+ ¥ray Q0 f5a]

;MXMM g[@c(f,h)‘ V—m>

701 QKA_>R “

W Elfgso- (1))
]L.

12

Quick Recap of the TD Part

How to go from a Bellman update operator to a learning rule”
1. Write down the Bellman up op for the thing you want to learn
* .0, Q,, < I"Q, if we want to learn Q"
2. Write down the detailed equation for a single s (or (s,a))
© Q,q(s,2) < R(s,2) + YEg p(s 2)[Q (s, m(s")]

3. Replace the expectations with their sampled version to form the
target (assuming data is (s, a, 7, s’, a’))

o target: r+yQ(s, n(s")) (expected Sarsa)
 alternative target: r + yQ(s’,a’) if on-policy (a’ ~ n(s"))
4. Online tabular ver: Plug into the template
* Q(s,a) « Q(s,a) + aftarget — Q(s, a))
5. Batch function approximation ver: run least sq regression on
* {(s,a) — target}

13

Quick Recap of the TD Part

Another example: TD(0)
1. Write down the Bellman up op for the thing you want to learn
* Vipt < TV
2. Write down the detailed equation for a single s (or (s,a))
* Vis(s) < R(s,7(s)) + YEg op(s,nsy[V(8]
3. Replace the expectations with their sampled version to form the
target (assuming data is (s, a, , s"))
e target: r+yV(s)
* Be careful! This is only a sampled version of above if on-policy
(a ~ n(s))
* Difference between learning V and Q: learning V™ has to be on-

policy (for now), but learning Q™ can be easily off-policy
(expected sarsa)

