

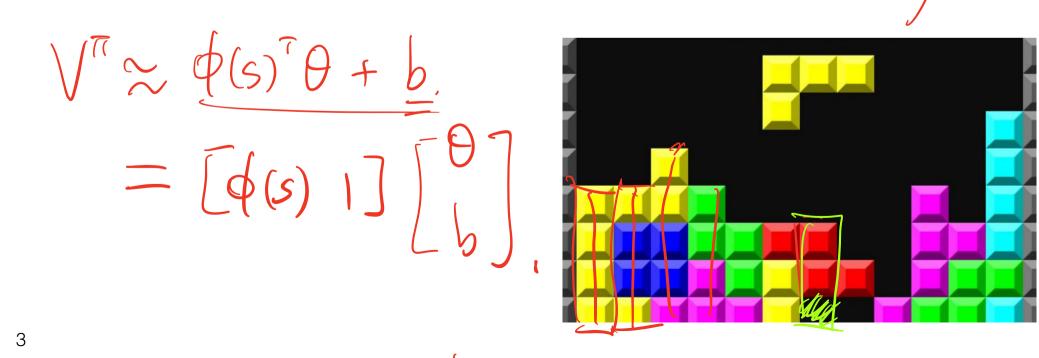
 S_1, A_1, V_1, S_2 .

Generalization for value prediction

- Major limitation of tabular RL: does not scale to large state space
 - most methods require that we run into the same state multiple times
 - when the state space is large, you might not see the same state even twice!
 - In other words: sample complexity scales with |S|
 - need generalization
- For value prediction problem, generalization requires that we have some prior knowledge about the form the value function
 - linear function approximation: design features $\phi(s) \in \mathbb{R}^d$ ("featurizing states"), and approximate $V^{\pi}(s) \approx \theta^{\top} \phi(s)$
 - only unknown: θ . d unknowns vs |S| unknowns!

Example: linear function approximation for tetris

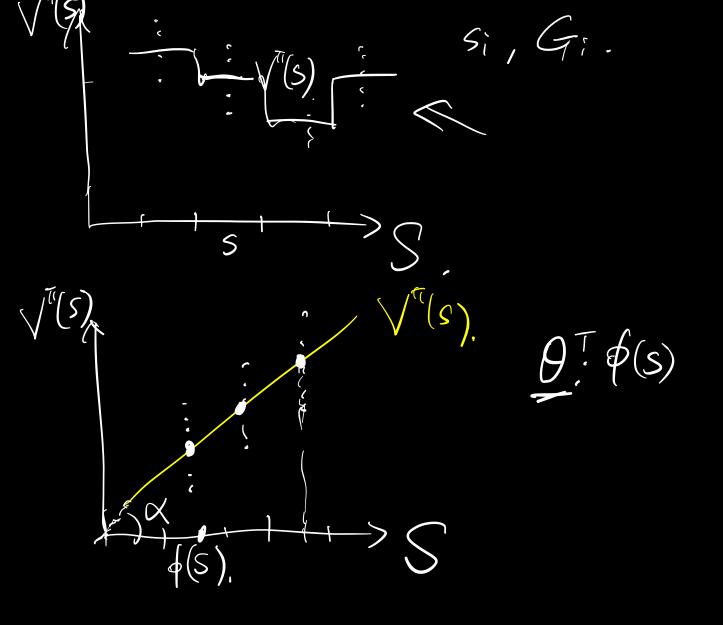
- An example featurization:
 - let the height of the pile in i-th column be the i-th feature
 - dimensionality of feature = #columns
 - (probably doesn't work; just an example)
- Feature engineering requires a lot of prior knowledge, domain insights, and trial and error, just as in supervised learning!

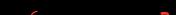


Monte-Carlo Value Prediction $\mathcal{L}_{(S)}^{(i)}, \mathcal{L}_{(I)}^{(i)}, \mathcal{L}_{(I)}^{(i)},$

- Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i , and let G_i be the (random) discounted return
- Collect (s_i, G_i) pairs $= \sum_{t=1}^{n} y_t + V(s) + LG(S)$
- Least square regression: $\min_{\theta = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} \phi(s_i) G_i)^2$
- Why this works? $\sqrt{(s)} = \mathbb{E}[G[s]] = \alpha gmin$
 - Assume $\{(s_i, G_i)\}$ are i.i.d., let (s, G) be variables equal in distribution
 - The expected version of the objective: $\min_{\theta} \mathbb{E}_{s,G}[(\theta^{\top}\phi(s) G)^2]$
 - If we do not restrict ourselves to linear functions, the function that minimizes this objective is s → E[G|s] (= V^π(s))!
 - If true V^π(s) happens to take linear form, the regression will find it in the limit (of infinite data)
 - Finite sample regime: bias & variance trade-off

 $\mathbb{E}\left[\left(f(x)-y^{2}\right)=\mathbb{E}\left[\left(f(x)-E(x)\right)^{2}\right]\right]$ $(+E[(E[X]-Y)^2])$ $5 \frac{1}{n} \sum_{j=1}^{n} (G_{i})$ $\bigvee(S_{+}) \ll \bigvee(S_{+}) + \bigotimes(G_{t} - \bigvee(S_{+})).$ $\mathbb{R}^{S} \supset \bigvee \leftarrow \bigvee + \varkappa \left(G_{t} - \bigvee(s_{t}) \right)^{\circ} \\ \overline{J} \\ \Theta \\ \Theta \\ O \leftarrow \Theta + \varkappa \left(G_{t} - \phi(s_{t})^{\circ} \right)^{\circ} \\ \overline{J} \\ \overline{J}$





Monte-Carlo Value Prediction

- The same idea applies to non-linear value function approximation
- More generally & abstractly, think of function approximation as searching over a restricted function space, which is a set whose members are functions that map states to real values.
- Function space of linear value function approximation: $\mathscr{F} = \{ V_{\theta} : \theta \in \mathbb{R}^{d} \}$, where $V_{\theta}(s) = \theta^{\top} \phi(s)$
 - typically only a small subset of all possible functions
 - Using "all possible functions" = tabular!
 - Equivalently, tabular MC value prediction can be recovered by choosing φ as the identity features φ(s) = {I[s = s']}_{s'∈S}

•
$$\min_{V_{\theta} \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} (V_{\theta}(s_i) - G_i)^2$$

- Plug in any function approximator of your choice
- SGD: uniformly sample i and $\theta \leftarrow \theta \alpha \cdot (V_{\theta}(s_i) G_i) \cdot \nabla V_{\theta}(s_i)$

 $V_{k+1}(s) = \left\{ F_{\pi} \left[Y + Y V_{k}(s') S \right] \right\}.$ $= \underset{\substack{\text{appmin}\\ f: S \to \mathcal{R}}{\text{for } f: S \to \mathcal{R}} = \left[\left(\begin{array}{c} f(s) - \left(\begin{array}{c} r_{+} \end{array} \right)^{2} \right)^{2} \right] \\ \underset{\substack{\text{input}\\ \text{input}}{\text{input}} \end{array} \right]$ SGD: $\theta \in \Theta + \alpha \left(\bigvee_{\Theta}(s) - \gamma_i - \gamma \bigvee_{K}(s_i) \right) \forall \bigvee_{\Theta}$ $5_{1,}a_{1}, \gamma_{1}, \dots, \dots, S_{t}, \beta_{t}, \gamma_{t}, \dots$

TD(0) with function approximation

- tabular: $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) V(s_t))$
- When we update $V(s_t)$, the target is $r_t + \gamma V(s_{t+1})$
- Batch version of the algorithm: one Bellman update can be approximated (using all data) as
 V_{k+1} ← arg min ¹/_− Σ (V_P(s_t) − r − γV_k(s_{t+1}))²

$$V_{k+1} \leftarrow \arg\min_{V_{\theta} \in \mathscr{F}} \frac{1}{T} \sum_{t=1}^{T} (V_{\theta}(s_t) - r - \gamma V_k(s_{t+1}))^2$$

- SGD + "no-wait": $\theta \leftarrow \theta \alpha \cdot (V_{\theta}(s_t) r \gamma V_{\theta}(s_{t+1})) \cdot \nabla V_{\theta}(s_t)$
- When using linear function approximation V_θ(s) = φ(s)^Tθ, we have θ ← θ − α · (φ(s_t)^Tθ − r − γφ(s_{t+1})^Tθ) · (φ(s_t))
 When using chain rule, we only take gradient on V_θ(s_t) and ignore
- When using chain rule, we only take gradient on $V_{\theta}(s_t)$ and ignore $V_{\theta}(s_{t+1})$; the latter is treated as a constant (it plays the role of V_k)

 $\theta s_{i}+, \quad \phi(s)^{T} \theta \approx \sqrt{\pi(s)}.$ $0 \in 0 + \times \cdot \left(\theta^{\mathsf{T}} \phi(s) - \mathsf{r} - \mathscr{Y} \theta^{\mathsf{T}} \phi(s') \right) \\ \left(\phi(s) - \mathscr{Y} \phi(s') \right).$

What if...? (not required)

- What happens if we also differentiate $V_{\theta}(s_{t+1})$?
- This corresponds to $\arg \min_{V_{\theta} \in \mathscr{F}} \sum_{(s,r,s')} (V_{\theta}(s) r \gamma V_{\theta}(s'))^2$
 - no iteration anymore; a clean optimization objective
 - (most RL algorithms with bootstrapped target do not have a fixed optimization objective; objective changes over time)
- Assume for simplicity that, each data point is generated by (1) sampling s i.i.d. from some exploratory distribution, and (2) generating r and s' conditioned on (s, π(s))
- Replacing empirical objective with the population version, the objective becomes $\mathbb{E}_{s,r,s'}[(V_{\theta}(s) r \gamma V_{\theta}(s'))^2]$

What if...? (not required)

- $\mathbb{E}_{s,r,s'}[(V_{\theta}(s) r \gamma V_{\theta}(s'))^2]$ can be decomposed into two terms
 - First term: $\mathbb{E}_{s}[(V_{\theta}(s) (\mathcal{T}^{\pi}V_{\theta})(s))^{2}]$
 - This is good! measures how much V_{θ} violates Bellman eq
 - A version of Bellman error $\|V \mathcal{T}^{\pi}V\|$
 - Second term: $\gamma^2 \mathbb{E}_s[Var_{s'|s,\pi(s)}[V_{\theta}(s')]]$
 - (assumes deterministic rewards)
 - This is bad! An additional term that penalizes functions that has large variance w.r.t. random state transitions
 - Special case: 0 when environment is deterministic
- So it's actually a sensible algorithm for deterministic environments, but doesn't work when stochasticity is significant

Resolutions (not required)

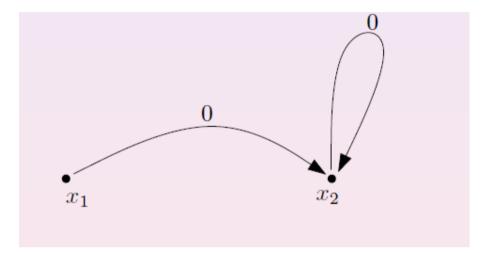
- If we have a simulator...
 - For each s in data, draw another independent state transition
 - Minimize objective $\mathbb{E}[(V_{\theta}(s) r \gamma V_{\theta}(s'_{A}))(V_{\theta}(s) r \gamma V_{\theta}(s'_{B})]$
 - "Double sampling" and Baird's residual algorithm (Bellman residual minimization)
 - Exercise: do you need to double sample the reward if reward is stochastic?
 - The conditional variance term is eliminated by double sampling
- If we can only draw 1 next-state (as with any natural data generation process)...
 - Estimate the conditional variance term and subtract from the objective
 - A minimax formulation (not covered in this course)
 - For further readings, see 542 slides on FQI.

Convergence?

- TD with function approximation can diverge in general
- Is it because of...
 - Randomness in SGD?
 - Nope. Even the batch version doesn't converge.
 - Sophisticated, non-linear func approx?
 - Nope. Even linear doesn't converge.
 - That our function class does not capture V^{π} ?
 - Nope. Even if V^{π} can be exactly represented in the function class ("realizable"), it still does not converge.

2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x_1, x_2 , 1-d features for the two states: $f_{x_1} = 1, f_{x_2} = 2$. Linear Function approximation with $\tilde{V}_{\theta}(x) = \theta f_x$.



$$\theta_k := \arg \min_{\theta} \frac{1}{2} (\theta - \operatorname{target}_1)^2 + (2\theta - \operatorname{target}_2)^2$$

$$= \arg \min_{\theta} \frac{1}{2} (\theta - \gamma \theta^{k-1} f_{x_2})^2 + (2\theta - \gamma \theta^{k-1} f_{x_2})^2$$

$$= \arg \min_{\theta} \frac{1}{2} (\theta - \gamma 2 \theta^{k-1})^2 + (2\theta - \gamma 2 \theta^{k-1})^2$$

$$(\theta - \gamma 2 \theta^{k-1}) + 2(2\theta - \gamma 2 \theta^{k-1}) = 0 \Rightarrow 5\theta = 6\gamma \theta^{k-1}$$

$$\theta_k = \frac{6}{5} \gamma \theta_{k-1}$$

This diverges if $\gamma \geq 5/6$.

credit: course notes from Shipra Agrawal

A simple example (finite horizon,
$$\gamma = 1$$
)
start $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow 8 \rightarrow 9 \rightarrow 10$
Iter #1: Data: (10, 1, end), ..., (10, 0, end) \Rightarrow 0.501

0.501

0.501

Iter #10: 0.501 0.501 0.501 0.501 ... 0.501 0.501 0.501

• Dataset $D = \{(s, r, s')\}$ looks like: $\{(1, 0, 2), (2, 0, 3), \dots, (10, 1, end), \dots, (10, 0, end)\}$

Data: $(9, 0, 1) \Rightarrow (9, 0+0.501) \Rightarrow$

Iter #2:

How things go wrong (w/ restricted class)
start
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow 8 \rightarrow 9 \rightarrow 10$$

Realizable
Function $0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5$
class $1.012 \times 0.756 \times 0.628 \times \cdots \times 0.5 \times 0.5 \times 0.51$
Iter #1: Data: (10, 1, end), ..., (10, 0, end) $\Rightarrow 0.501$
Iter #2: Data: (10, 1, end), ..., (10, 0, end) $\Rightarrow 0.502 \times 0.501$
...
Iter #10: $1.012 \times 0.756 \times 0.628 \times \cdots \times 0.502 \times 0.501$

Example given in Dann et al'18

Non-convergence

- Why things go wrong?
- Bellman update is a contraction, but here we have an additional projection step: $V_{k+1} \leftarrow \Pi_{\mathscr{F}} \mathscr{T}^{\pi} V_k$, projected Bellman update may NOT be a contraction (even with linear function approximation)
 - it is still a contraction in some special cases; will see
- In other words: in each iter, we solve a regression problem where the target function is $T^{\pi}V$, where V can be arbitrary function in \mathcal{F}
- The fact that $V^{\pi} \in \mathscr{F}$ does not imply that $T^{\pi}V$ is in \mathscr{F} ! We may do quite poorly in the regression problem, and the iteration does not mimic a Bellman update
- Why tabular is fine? \mathscr{F} is fully expressive so $T^{\pi}V$ is always in \mathscr{F} .
 - Similarly for func approx, if we assume that \mathscr{F} is closed under T^{π} , can prove some good properties of TD
- All alg based on bootstrapped targets suffer from this issue
 - Compare to the behavior of Monte-Carlo