| |- QW{? \ﬂootm@\ég/ S, pulhi step 4—
v ovv[)o(x’% olocta. S. vﬁp—ffp[i% o(a,m_
| tabulor represestat)5, Tuncton appvinective

| Valge pyveo/{o‘ﬁw\. G. (/n‘W{ | |
+— Value Prediction

with Function Approximation
Reading: Algs for RL (Szepesvari), Sec 3.2

SI)&(,V|)SL. N

V'

Generalization for value prediction

* Major limitation of tabular RL: does not scale to large state space

* most methods require that we run into the same state multiple
times

* when the state space is large, you might not see the same
state even twice!

* In other words: sample complexity scales with ||

* need generalization

* For value prediction problem, generalization requires that we
have some prior knowledge about the form the value function

. linear function approximation: design features ¢(s) € R¢
(“featurizing states”), and approximate V'(s) = 0 p(s)

* only unknown: 8. d unknowns vs |S| unknowns!

Example: linear function approximation for tetris

04;7
* An example featurization: Qg
. rl\et/therheight of the pile in i-th column be the i-th feature / 4
* dimensionality of feature = #columns 2

* (probably doesn’t work; just an example) k) y

* Feature engineering requires a lot of prior knowledge, domain/} ‘
Insights, and trial and error, just as in supervised learning!

\/ﬁ% %)794_ b

e

—

<

s
o

p—

= (4o \]l

« Least square regression:

« Why this works? \/7(5)

e Assume {(si, Gi)} are i.i
distribution

« The expected version of the objective: ming [ES,G[(E)Tgb(s) — G)2]

e |f we do not restrict ourselves to linear functions, the function
that minimizes this objective is s = E[G[s] (= V'(s))!

o If true V'(s) happens to take linear form, the regression will find
it in the limit (of infinite data)

* Finite sample regime: bias & variance trade-off

(/Eu

s+ w (G- V(is))
\/<§+ \/ s <€Ft \/[S))[
2oV <

ol o
Vs
O»} Cé
@;@\L@S

(G- 619(&)?83 ¢(s)
< O+ o
S <

Q@M ﬂj@dg) &) l

Monte-Carlo Value Pred. — B

* The same idea applies to non-linear value function approximation

* More generally & abstractly, think of function approximation as
searching over a restricted function space, which is a set whose
members are functions that map states to real values.

* Function space of linear value function approximation:
={Vg:0 € Rd}, where Vg(s) = eTgb(S) S/
e typically only a small subset of all possible functions o]
* Using “all possible functions” = tabular! ?
* Equivalently, tabular MC value prediction can be recovered b/77
choosing ¢ as the identity features ¢(s) ={l[s = s']}, o S N
. 1 n — ”)
. mlnveegzﬁziﬂ

u}J

* Plug in any function approximator of your choice
« SGD: uniformly sample iand 8 « 0 —a - (Vg(s;)) = G;) - VVg(s))

c\

5 B4 e = o

e —

Vi) e M)+ Cr 9 V)~ Vien)
kl S gUP , $ X‘t {
Vg(i (7ﬁ\/'<

> 4y, Yl; I Sf,ﬂkv‘/\)éé

@ e D+ (VQ (S)- Ye- Y\/Q(Svﬂ)> V\/g.()

TD(0) with function approximation

tabular: V(st) < V(st) + oty + YV (St41) — V(st)
When we update V(s), the target is 1y + YV(Si41)

Batch version of the algorithm: one Bellman update can be
approximated (using all data) as
T

1
Vis1 < arg min — 3 (Vg(sy) = 1 =y Vi(ste1))°

VeEth 1

SGD + “no-wait”: 0 « 0 —a - (Vg(s)) —r — yVeg(Sts1)) VVe(st)

When usmg lireal function approxmaﬂon Vg(s) E) we have
0 —0—-a- Q —r—ygbsm st7
When using chairrrule, we only take g adient on Vg(st) and ignore

Va(si+1); the latter is treated as a constant (it plays the role of Vi)

What if...”? (not required)

What happens if we also differentiate Vg(si;1)?
This corresponds to arg miny,cs Z(S s (Vg(s) —r - yVe(s'))2

* No iteration anymore; a clean optimization objective

* (most RL algorithms with bootstrapped target do not have a
fixed optimization objective; objective changes over time)

Assume for simplicity that, each data point is generated by
(1) sampling s i.i.d. from some exploratory distribution, and
(2) generating r and s’ conditioned on (s, 7(s))

Replacing empirical objective with the population version, the
objective becomes Eg s{(Ve(s) — 1 - yVe(s'))Z]

What if...”? (not required)

o Eqrsl(Ve(s)—1r— yVe(s'))z] can be decomposed into two terms
o First term: E¢[(Vg(s) — (T™Vg)(s))?]
* This is good! measures how much Vg violates Bellman eq
A version of Bellman error ||V = V||
» Second term: y2[Eg[Vargs nis)[Ve(s)]]

e (assumes deterministic rewards)

* This is bad! An additional term that penalizes functions that
has large variance w.r.t. random state transitions

e Special case: 0 when environment is deterministic

* S0 it's actually a sensible algorithm for deterministic
environments, but doesn’t work when stochasticity is significant

Resolutions (not required)

* If we have a simulator...
* For each s in data, draw another independent state transition
« Minimize objective E[(Vg(s) —r —yVg(sa))(Ve(s) = r —yVg(sp)]
* “Double sampling” and Baird’s residual algorithm (Bellman
residual minimization)

* Exercise: do you need to double sample the reward if reward is
stochastic?

* The conditional variance term is eliminated by double sampling
* |f we can only draw 1 next-state (as with any natural data
generation process)...
* Estimate the conditional variance term and subtract from the
objective
* A minimax formulation (not covered in this course)
e For further readings, see 542 slides on FQI.

10

Convergence?

* TD with function approximation can diverge in general
* |s it because of...
* Randomness in SGD?
* Nope. Even the batch version doesn't converge.
* Sophisticated, non-linear func approx?
* Nope. Even linear doesn't converge.

* That our function class does not capture V’*?

* Nope. Even if V*can be exactly represented in the function
class (“realizable”), it still does not converge.

2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x1,x2, 1-d features for the two states: f,, = 1, f,, = 2. Linear Function approximation

with Vy(z) = 0f,.

0
4

N\

1
O := arg m@in 5(9 — target,)? + (20 — target,)?
1
= argmin o (0 = 90°1 fr,)* + (20 — 40" fr,)?
1
= arg mein 5(9 — 7207712 4 (20 — 420%1)2

(0 — 42051 +2(20 — 4265~ 1) = 0 = 50 = 60"
6
Or = 57913—1
et =2/ credit: course notes
fromm Shipra Agrawal

11

A simple example (finite horizon, y=1)

M ORORORORONORD

Iter #1: Data: (/ / end)/ ceey (/ / end) I:D 0.501
Iter #2: Data: (©), 0, @) = (®©, 0+0.501) = 0.501 0.501
Iter #10: 0.501 0.501 0501 0501 ... 0501 0.501 0.501

« Dataset D ={(s, 1, s")} looks like:
(@D, 0,2),(@,00), ..., 0, 1, end), ..., (10, 0, end)}

12

How things go wrong (w/ restricted class)

@ ~0~@~®

Realizable
Function < < V — < 0. 5|
class 1.012 0.756 0.628 0.504 0.502 0.501
ter #1: Data: (40, 1, end), ..., (40, 0, end) = 0.501
Iter #2: Data: (©), 0, 40) = (©), 0+0.501) = 0.502 0.501
1
Iter #10: 1.012 0.756 0.628 0.502 0.501

i Example given in Dann et al’18

14

Non-convergence

Why things go wrong?
Bellman update is a contraction, but here we have an additional

projection step: Vi1 < MNzI MV, projected Bellman update may
NOT be a contraction (even with linear function approximation)

* itis still a contraction in some special cases; will see

In other words: in each iter, we solve a regression problem where the
target function is T"V, where V can be arbitrary function in &

The fact that V™' € & does not imply that T*V is in %! We may do
quite poorly in the regression problem, and the iteration does not
mimic a Bellman update

Why tabular is fine”? & is fully expressive so T"V is always in &.

* Similarly for func approx, if we assume that & is closed under T™,
can prove some good properties of TD

All alg based on bootstrapped targets suffer from this issue

 Compare to the behavior of Monte-Carlo

