Tabular RL for Value Prediction
Reading: Algs for RL (Szepesvari), Sec 3.1

— ,
=B - fhe Vadffje Prediction Problem i [Zwyf(s“df J

. Given@ want to learn V™ or Q" = E:s«vo([\/T(s)]

* Why useful? Recall that if we know how to compute Q™, we can
run policy iteration

* On-policy learning: data is generated by m 4
* Off-policy learning: data is generated by some other policy

* Will mostly focus on on-policy learning for now; all actions in data
are taken according to @(often omitted)

* When action is always chosen by a fixed policy, the MDP reduces
to a Markov chain plus a reward function over states, also known
as Markov Reward Processes (MRP)

Monte-Carlo Value Prediction \/R(5>

* |f we can roll out trajectories from any starting state that we want,
here is a simple procedure—

* For each s, roll out n trajectories using policy 7

N

* For episodigtasks, roll out until termination .

e For continuing tasks, roll out to a length (typically
H =0(1/(1 —v))) such that omitting the future rewards has
minimal impact (“small truncation error”) —

o Let \Afn(s) (will just write V(s)) be the average discounted return

* also works if we can draw starting state from an exploratory initial
distribution (i.e., one that assigns O probabllity to every ——

* Keep generating trajectories\unti ave enough data points

Implementing MC in an online manner

* The previous procedure assumes that we collect all the data,
store them, and then process them (batch-mode learning)

e Can we process each data point as they come, without ever
needing to store them? (online, one—p/?ss algorithm)

. Forz—l 2, .

I

4 o

—

Draw a starting stateDrom the exploratory initial distribution,

roll out a trajectory using m from s;, and let Gl be t_& (random)
discounted return X{‘ G)

et n(sz) be the number of times s;has appeared 4s hn |n|t|al
stat&_ If n(s;) = 1 (first time seeing this state), let V(s;) « G;

7
Otherwise,SV(si) — n(:ZS;1V(si)+%S_)Gi J \/ (Q|

Verity: at any point, V(s) Is always the MC estimation using
trajectories starting from s available so far

Implementing MC in an online manner
o OC 1=
« More generally, V(sj) < (1 - oc)V(sig— aG
* ais known as the step size or the léarning rate

* Iin theory, convergence require sum pf a goes to infinity while
sum of a2 stays finite; in practice, constant small a is often used

e G;is often called “the target”

* The expected value of the target is what we want to update our
estimate to, but since it's noisy, we\ghly move slightly to it

. Altema.tive expres.sion;.\/_(si)}.\/(s?) + (G =V(s})),
* Moving the estimate in the direction of error (= target - current)
* Can be interpreted as stochastic gradient descent

al random variables vy, vy, ..., v,, the average
east-square optimization problem:

e |f we have L]
i e g0lution of the

rent: v - v; (for uniformly random i)

Every-visit Monte-Carlo

Suppose we have a continuing task. What if we cannot set the

starting state arbitrarily?

Let’'s say we only have one single long trajectory

s1,41,711, S2, 42,12, 53,03,73,54, ...

* (By “long trajectory”, we mean trajectory length >> effective
horizon H=0(1/(1 -7Y)))

On-policy: ar ~ mt(st), where 7t is the policy we want to evaluate

Algorithm: for each s, find all t such that s; = s, calculate the
discounted sum of rewards between time step t and t+H, and
take average over them as V(s;)

Convergence requires additional assumption: the Markov chain
iInduced by 7t is ergodic—implying that all states will be hit
infinitely often if the trajectory length grows to infinity

Every-visit Monte-Carlo

* You can use this idea to improve the algorithm when we can
choose the starting state & the MDP is episodic

* |.e., obtain a random return for each state visited on the trajectory
 What if a state occurs multiple times on a trajectory?

* Approach 1: only the 1st occurrence is used (“first-visit MC")
* Approach 2: all of them are used (“every-visit MC”)

Gi= 2

\g'b"t (+ . \/(s0) €
t'=f Alternative Approach: TD(0O)t[c%\[)?g

* Again, suppose we have a single long trajectory si, a1, 71,82,42, 12,
S3,3, 73,54, ... IN @ continuing task an

e« TD(0): fort=1,2, ..., V(st) < V(st) + a(r; + yV(stz1) — V(s))

TD = temporal difference
1y + YV (Ste1) — V(st): “TD-error” <T \Ob) /LD(JH\K\/G”Q

The same structure as the MC update rule, except that we are
using a different target here: ry + YV(si41)

Often called “bootstrapped” target: the target value depends
on our current estimated value function V

Conditioned on s;, what is the expected value of the target
(taking expectation over the randomness of ry, s141)?

o It's (TV)(s;)

0): Ve M+ «(G- Visy)
W/ C;+ = Yo X\/(gt l)

V On g @ % ORN1 V6]
{9 [T+ v (9’)}

\[a QRS \/k+\ T VZ

v Lo wm> |

frseS
‘Fb-f c=l, v, -, N
\/Kﬂ (5)@‘ \/k-u (9} ra

X (U+ Y\/k (Sl‘l) = \/V\n (9) _

L (Sev,¢).
/ \/{q((g) & \Af_ﬂ(gj"' 0<<Y%Y\/F(SQ‘ \/[C'ﬂ(g)).

Understanding TD(O)

+ V(st) « V(st) + alr + vV (ster) = V(sy)) S——
\
* Imagine a sllghtlym

r * Initialize V and V"’ arbitrarily
Keep running V (sy) < V (sy) + otz + 7YV (se1) =V (50))

Note that only V’is being updated; V doesn't C‘hvange

oo

What's the relationship between V and V'’ after long enough’?

* V'=T" VI We've completed 1 iter of VI for solving V™
¥’>(30|oy V’to V, and repeat this procedure again and again

* TD(0): almost the same, except that we don’t wait. Copy V'to V
after every update!

* (Algorithms that “wait” actually have a come back in deep RL!)

* Optional reading: synchronous vs asynchronous updates in
dynamic programming (for planning)

10

TD(0) vs MC

v

TD(0) target: ry + yV(st+1) 3

MC target It + YIiyq + ’Y2I't+2 +...

MC target is unbiased: expectation of target is the V™(s)

TD(0) target is biased (w.r.t. V7(s)): the expected target is
(T™V)(s)

* Although the expected target is not V7, it's closer to V™ than
where we are now (recall that T™ is a contraction)

On the other hand, TD(0) has lower variance than MC

Bias vs variance trade-off

Also a practical concern: when interval of a time step is too small
(e.g., in robotics), V(s:) and V(s:+1) can be very close, and their
difference can be buried by errors (error compounding over time)

N\

/

TD(A): Unifying TD(0) and MC

- * 1-step bootstrap (=TD(0)): rt+yV(st+1) 4:5

w 2-step bootstrap: T Yl + Y 2V ($t40) —

e 3-step bootstrap: r + yrq + y2ro + y3V st+3 é\) V \/

11

e co-step bootstrap (=MC=TD(1)): 1y + yrieq + y2r + . . .

ey

* n-step bootstrap: as n increases, more variance, less bias
« Exercise: what’s the expected target in n-step bootstrap? (T r‘)'”V

 TD(M): weighted ¢ Inat] f n-step bootstrapped target, with
weighting scheme (1 = M)A

* A =0:only n=1 gets full weight. TD(O)
* limit A -> 1: (almost) MC, see pg 24 of Szepesvari
e “forward view” of TD(A)

|
S - .
% @
— -

TD(A): Unifying TD(0) and MC

« Why the choice of (1 —a)A"'?
* Enables efficient online implementation
e “Backward view” of TD(A)

Algorithm 3 The function that implements the tabular TD()) algorithm with replacing

traces. This function must be called after each transition.
function TDLAMBDA (X, R,Y,V, 2)

Input: X is the last state, Y is the next state, R is the immediate reward associated with
this transition, V' is the array storing the current value function estimate, z is the array

storing the eligibility traces Their X is our S

: 0+ R+~ -V[Y]-V[X

92: for all z € X do £& . e Their Y is our St41

3: vy oA z[z] .

4 — z then e Oisthe standard TD error (1-step)

: A z[x . T

2: enz[.a:] crhed z Is called the eligibility trace

i endvf[(fl‘_ Vizl+o -0 -2zl o Eyery step we update at all states (TD(0)
o: return (V. 2) only updates V at the current state s)

* This code is the improved version with replacing traces; the
12 original version has the red term

Equivalence between backward and forward view

* Will show in a simplified case

* An infinite trajectory, initial state s; only appears once, all updates
“are postponed til the end and “patched” together N

* calculate the update for V(s1) according to the two views
S
\/\ Forward view: (learning rate a omitted in all updates)

r1+ - V(si) ((/”/I\) 13

. (1 - M\ - (11 +Yr2+Y2V s3) — V(s1))
* (1 =M)A. (r1 +yr2 + y2r3 + ¥3V(s4) - V(s1)), @yd so on

\,- Backward view: \6 _ (AY)Q 1 g<_1121+7 -XV([iY]—V[X]
2: ITor all x € o

o 1. (r1 +yVi(so) - Vs1
_ z|x A zZlx
« Ay (r2+VV(33 - (| KA> if[)]((_:Z: then d J
z[x] + 1
end if -
Vig| <« Vz|+a - 6 - z[x]

o

¢ A%y2. (r3+yV(s4) - (3)), and so on

13

