Policy Gradient

Policy Gradient (PG)

Given a class of parameterized policies g, optimize
J(mg) = Egog [V ()]

* We will often make the dependence of mgpon 6 implicit, i.e.,
when we write Tt we mean g in this part of the course

Simple idea: can run (stochastic) gradient descent if we can
obtain (an unbiased estimate of) VgJ(mg)

-~

« will abbreviate as J(m)

Beautiful result: an unbiased estimate can be obtained from a

single on-policy trajectory, without using knowledge of P and R of
the MDP!

Has a strong connection to IS

“Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo
method—it does not leverage Bellman equation

Why PG?

RL methods can be categorized according to what we try to
approximate: model-based RL, value-based RL, policy search

Eventually we only care about a good policy!
value-based RL is indirect (model-based even more)

It a value function induces a good greedy policy, but the function
itself severely violates Bellman equation, you won'’t be able to find
such a policy via value-based methods

In other words, policy search is agnostic against misspecification
of function approximation

e Apart from difficulties in optimization, there is nothing that
prevents policy search from finding the best policy in class

Value- (and model-) based methods have their advantages—uwill
come back later

Example of policy parametrization

Linear + softmax:

« Featurize state-action: ¢ : S x A - R

e Policy: n(als) x e® ¢(s.a)

Recall that in SARSA we've also seen the softmax policy
There we include a temperature parameter, n(als) o e8 #(s.a)/T
Why the difference?

e InTD, we want 8'¢(s, a) = Q"(s, a). We don’t have the freedom to
rescale it; i.e., if 07¢(s, a) = Q™(s, a), then (20)" ¢(s, a) # Q"(s, a).

* We need an additional knob (T) to control the stochasticity of

« In PG, 07¢(s, a) does not carry any meaning—it’s totally
possible that eventually we find a 6 but 67 ¢(s, a) £ Q™(s, a)!

 That's why we can absorb the temperature parameter in 0
* Reflection of the agnosticity of PG

Derivation of PG

Use t :=(s1,a4,11, ..., SH, aH, ') 10 denote a trajectory (episodic)
_’—
Use t ~ & as a shorthand for distribution induced by m

Let R(7) = Ztl_l vi-1ry / g

= s _ "
Ver 1: VI(n) =[IQR(TJZ{1 , Vlog m(a stﬂ EEZN(-ORC/E
* Will derive using a “‘I\/IC”—ster proof
Ver 2: Vi(x) = ﬁESNdn,aNn(s)[Q“(s, a) Viog ri(als)]

* dris the normalized occupancy (from do as init distribution)
* Possible implementation: (1) roll out t ~ =, (2) pick a random
time step t w.p. «x yt-1, (3) (Z{'Lt yt=1r) Vlog m(a; | st)
o Note that [E[Z{"'=t yt=1r st a] = Q™(sy, a)

* Take expectation over step (2) gives an alternative form:
Vi(r) = Eq o S (S5 v -11y) Viog m(a | sy)]

* Will derive using a “DP”-style proof; can also be derived using
the MC-style proof for ver 1

\79 LB‘(%PTQLEL g),ﬁ(Jsz,az/.,,)
P
- 5o o0 P

L_ O'F(s.) 5
VLQS M lals) = =

N 2, o2
— 96{9 O #(S0r
= % w‘” 4(5)
_ dw,) i ie/éff(;e.) ?(‘0'7
9”1?401)
CF@&) — E [ép(sa.’)j(

&’\r&

b~ T

1

\;jéﬂ)

E. (2 > n)(ﬁﬂ VL»XT(QM,L))J.‘
Lb ' (V(@(Yr m‘ﬁ %:, 91’41@)]

[Zv%r{mw L P]

i
&

\

|

[
—T

OL - A(é\/l—w / i@ r
/
IS e
— i Ho o ¥
£, [2 obyrinto 2 7

L
&E#m; EL= 2 T4 (€]

= =R, p
Q*(S,L)/)c SRION

Pros & Cons of PG, and beyond

e Standard PG is fully on-policy, and it's hard to reuse data

e after each update step, the policy changes and we need to
generate MC trajectories from the new policy

* in practice, it suffers from noisy gradient estimate
* Blend PG with value-based method:
o V(1) = 7o g aun(s[Q (s, @) Viog n(al s)]

. ‘Instead of using MC estimate Z{Ltvt”rt for Q"(s, a), USE an
approximate value-function Q (s, a;), often trained by TD

* e.g., using expected Sarsa—can leverage previous (off-policy)
data to learn Qm(ss, ay)

* “Actor-critic”: the parametrized policy is called the actor, anad
the value-function estimate is called the critic

Basgline in PG
. Vi(n) = 11TY[Es~d”,a~n(s)(Q/€§|09 m(als)]

\ \/

. Foranyf:s—R, Vi(x) = ﬁESNdn’aNn(s)[(Q”(s, a) — f(s)) Vlog n(al s)]

— Cae

e foranys, Eqrs)lf(s) Viog m(al s)] = £(s) - E,ns)l VIOG a;(; 1s)] =0
* proof: E,.nelViogn(als)] = 3, n(als) Vlog n(als)
=ZaVn(a|s)=Vzan(a|s)=v1‘=-(7‘ N ,V_n—(ﬂc)
(7 Y7
* One choice: f = V'(s) & (C,A.()’V (@ ‘e (3“!5)

¢ W) = 7 Egeam annelAT(5, 2) VIog n(al s)]

* recall that A is the advantage function

Comparing AC with Policy lteration

o V(1) = 1 Eo g annsQ7(s, 2) Viog n(al)]
* A different but related procedure: freeze 1, update the parameter
of another policy t” (whose parameters are 0) by
I ’ 1 "]-[’
0" 0ot ———Fy g5 g Q7(5, 2) Viog (al)]

* gradient =0 at n'=ngr => policy iteration
* This can run into serious Issues

« Tabular Pl theory assumes that we get Q™ that is accurate for
every single state-action pair

e Simply unrealistic if problem is complex and we can only roll-
out trajectories (instead of sweeping the entire state space)

* in the middle of learning, part of the state space may be
under-explored

« at best we can hope Q" to be accurate under distribution of
state space we have data for

Comparing AC with Policy lteration

VI(m) = 1 Eo g aun(e[Q(, @) Viog n(als)]
A different but related procedure: freeze 7t, update the parameter
of another policy t” (whose parameters are 0) by
: : 1 .
0" 040 ———Fq g Q(s, 2) Viog m (al)]

* gradient =0 at n'=ngr => policy iteration
This can run into serious ISsuUes

* (cont.) if 77/ visits new states, Q" may be highly inaccurate in
those states, and policy improvement no longer holds

Perhaps better idea: move 7’ a little more but not too far from 7,
so that their state occupancies are still similar.

Theory: CPI [Kakade & Langford’02]
Modern implementations & variants: TRPO, PPO, etc

RL Algorithms Landscape

policy search value-based RL
Policy Optimization Dynamic Programming
modified
pollcy |terat|on
DFO / Evolution Policy Gradlents Policy lteratlon Value lteration
O-th order opt. / /
Q-Learning
Actor-Critic
Methods

Slide Credit: Pieter Abbeel

10

11

Practical considerations

* Recall that one way to implement PG/AC is:
1. roll out t ~ =,
2. gradient from step . Q"(st, a) Vlog mt(as] st)
3. sum up the gradients from all time steps, with weight o yt-1,
 What if a trajectory length >> 1/(1 = vy)?
* Most of the data points are wasted!
* Deep RL implementation in Atari games:
* Trajectory length = ~5 min

e Effective horizon = secs
y=0.99, frame rate 60Hz = effective horizon = O(1/(1-y) * 1/60)) = ~ sec

12

Practical considerations

Actual implementation:

1. roll out T ~ =,

2. gradient from step t: Q"(s, a;) Vlog n(ay| sy)

3. put equal weights on gradients from all time steps
Pro: use all data points; Con: biased gradient.
Is there no discounting then?
* Q"(s, &) is still learned using y (e.g., by TD in actor-critic)
How to understand/make sense of this”

