
Policy Gradient

Policy Gradient (PG)

 2

• Given a class of parameterized policies πθ, optimize

• We will often make the dependence of πθ on θ implicit, i.e.,

when we write π we mean πθ in this part of the course
• Simple idea: can run (stochastic) gradient descent if we can

obtain (an unbiased estimate of)
• will abbreviate as

• Beautiful result: an unbiased estimate can be obtained from a
single on-policy trajectory, without using knowledge of P and R of
the MDP!

• Has a strong connection to IS
• “Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo

method—it does not leverage Bellman equation

J(πθ) := 𝔼s∼d0
[Vπθ(s)]

∇θJ(πθ)
J(π)

Why PG?

 3

• RL methods can be categorized according to what we try to
approximate: model-based RL, value-based RL, policy search

• Eventually we only care about a good policy!
• value-based RL is indirect (model-based even more)
• If a value function induces a good greedy policy, but the function

itself severely violates Bellman equation, you won’t be able to find
such a policy via value-based methods

• In other words, policy search is agnostic against misspecification
of function approximation
• Apart from difficulties in optimization, there is nothing that

prevents policy search from finding the best policy in class
• Value- (and model-) based methods have their advantages—will

come back later

Example of policy parametrization

 4

• Linear + softmax:
• Featurize state-action:
• Policy:

• Recall that in SARSA we’ve also seen the softmax policy
• There we include a temperature parameter,
• Why the difference?

• In TD, we want . We don’t have the freedom to
rescale it; i.e., if , then .

• We need an additional knob (T) to control the stochasticity of π
• In PG, does not carry any meaning—it’s totally

possible that eventually we find a but !
• That’s why we can absorb the temperature parameter in
• Reflection of the agnosticity of PG

ϕ : S × A → ℝd

π(a |s) ∝ eθ⊤ϕ(s,a)

π(a |s) ∝ eθ⊤ϕ(s,a)/T

θ⊤ϕ(s, a) ≈ Qπ(s, a)
θ⊤ϕ(s, a) ≈ Qπ(s, a) (2θ)⊤ϕ(s, a) ≠ Qπ(s, a)

θ⊤ϕ(s, a)
θ θ⊤ϕ(s, a) ≠ Qπθ(s, a)

θ

Derivation of PG

 5

• Use to denote a trajectory (episodic)
• Use as a shorthand for distribution induced by π
• Let
• Ver 1:

• Will derive using a “MC”-style proof
• Ver 2:

• dπ is the normalized occupancy (from d0 as init distribution)
• Possible implementation: (1) roll out , (2) pick a random

time step t w.p. , (3)
• Note that
• Take expectation over step (2) gives an alternative form:

• Will derive using a “DP”-style proof; can also be derived using

the MC-style proof for ver 1

τ := (s1, a1, r1, …, sH, aH, rH)

τ ∼ π
R(τ) := ∑H

t=1 γt−1rt

∇J(π) = 𝔼τ∼π[R(τ)∑H
t=1∇ log π(at |st)]

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

τ ∼ π
∝ γt−1 (∑H

t′ =t γt′ −1rt)∇ log π(at |st)

𝔼[∑H
t′ =t γt′ −1rt |st, at] = Qπ(st, at)

∇J(π) = 𝔼τ∼π[∑
H
t=1 (∑H

t′ =t γt′ −1rt′)∇ log π(at |st)]

Pros & Cons of PG, and beyond

 6

• Standard PG is fully on-policy, and it’s hard to reuse data
• after each update step, the policy changes and we need to

generate MC trajectories from the new policy
• in practice, it suffers from noisy gradient estimate
• Blend PG with value-based method:

•

• Instead of using MC estimate for , use an
approximate value-function , often trained by TD

• e.g., using expected Sarsa—can leverage previous (off-policy)
data to learn

• “Actor-critic”: the parametrized policy is called the actor, and
the value-function estimate is called the critic

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

∑H
t′ =t γt′ −1rt Qπ(st, at)

Q̂π(st, at)

Q̂π(st, at)

Baseline in PG

 7

•

• For any ,

• for any s,
• proof:

• One choice:

•

• recall that A is the advantage function

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

f : S → ℝ ∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[(Qπ(s, a) − f(s))∇ log π(a |s)]

𝔼a∼π(s)[f(s)∇ log π(a |s)] = f(s) ⋅ 𝔼a∼π(s)[∇ log π(a |s)] = 0

𝔼a∼π(s)[∇ log π(a |s)] = ∑a π(a |s)∇ log π(a |s)
= ∑a∇π(a |s) = ∇∑a π(a |s) = ∇1 = 0

f = Vπ(s)
∇J(π) = 1

1 − γ𝔼s∼dπ,a∼π(s)[Aπ(s, a)∇ log π(a |s)]

Comparing AC with Policy Iteration

 8

•

• A different but related procedure: freeze π, update the parameter
of another policy π’ (whose parameters are) by

• gradient = 0 at => policy iteration
• This can run into serious issues

• Tabular PI theory assumes that we get that is accurate for
every single state-action pair

• Simply unrealistic if problem is complex and we can only roll-
out trajectories (instead of sweeping the entire state space)

• in the middle of learning, part of the state space may be
under-explored

• at best we can hope to be accurate under distribution of
state space we have data for

∇J(π) ≈ 1
1 − γ𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π(a |s)]

θ′

θ′ ← θ′ +α ⋅ 1
1 − γ 𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π′ (a |s)]

π′ = πQπ

Q̂π

Q̂π

Comparing AC with Policy Iteration

 9

•

• A different but related procedure: freeze π, update the parameter
of another policy π’ (whose parameters are) by

• gradient = 0 at => policy iteration
• This can run into serious issues

• (cont.) if π’ visits new states, may be highly inaccurate in
those states, and policy improvement no longer holds

• Perhaps better idea: move π’ a little more but not too far from π,
so that their state occupancies are still similar.

• Theory: CPI [Kakade & Langford’02]
• Modern implementations & variants: TRPO, PPO, etc

∇J(π) ≈ 1
1 − γ𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π(a |s)]

θ′

θ′ ← θ′ +α ⋅ 1
1 − γ 𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π′ (a |s)]

π′ = πQπ

Q̂π

 10
Slide Credit: Pieter Abbeel

policy search

0-th order opt.

value-based RL

Practical considerations

 11

• Recall that one way to implement PG/AC is:
1. roll out ,
2. gradient from step t:
3. sum up the gradients from all time steps, with weight ,

• What if a trajectory length >> ?
• Most of the data points are wasted!

• Deep RL implementation in Atari games:
• Trajectory length = ~5 min
• Effective horizon = secs

 γ = 0.99, frame rate 60Hz ⇨ effective horizon = O(1/(1-γ) * 1/60)) = ~ sec

τ ∼ π
Qπ(st, at)∇ log π(at |st)

∝ γt−1

1/(1 − γ)

• Actual implementation:
1. roll out ,
2. gradient from step t:
3. put equal weights on gradients from all time steps

• Pro: use all data points; Con: biased gradient.
• Is there no discounting then?

• is still learned using (e.g., by TD in actor-critic)
• How to understand/make sense of this?

τ ∼ π
Qπ(st, at)∇ log π(at |st)

Qπ(st, at) γ

 12

Practical considerations

