Policy Gradient

Policy Gradient (PG)

- Given a class of parameterized policies π_θ, optimize
 J(π_θ) := E_{s∼d₀}[V^{π_θ}(s)]
 - We will often make the dependence of π_{θ} on θ implicit, i.e., when we write π we mean π_{θ} in this part of the course
- Simple idea: can run (stochastic) gradient descent if we can obtain (an unbiased estimate of) $\nabla_{\theta} J(\pi_{\theta})$
 - will abbreviate as $J(\pi)$
- Beautiful result: an unbiased estimate can be obtained from a single on-policy trajectory, without using knowledge of P and R of the MDP!
- Has a strong connection to IS
- "Vanilla" PG (e.g., REINFORCE) is considered a Monte-Carlo method—it does not leverage Bellman equation

Why PG?

- RL methods can be categorized according to what we try to approximate: model-based RL, value-based RL, policy search
- Eventually we only care about a good policy!
- value-based RL is indirect (model-based even more)
- If a value function induces a good greedy policy, but the function itself severely violates Bellman equation, you won't be able to find such a policy via value-based methods
- In other words, policy search is agnostic against misspecification of function approximation
 - Apart from difficulties in optimization, there is nothing that prevents policy search from finding the best policy in class
- Value- (and model-) based methods have their advantages—will come back later

Example of policy parametrization

- Linear + softmax:
 - Featurize state-action: $\phi : S \times A \rightarrow \mathbb{R}^d$
 - Policy: $\pi(a | s) \propto e^{\theta^{\top} \phi(s, a)}$
- Recall that in SARSA we've also seen the softmax policy
- There we include a temperature parameter, $\pi(a|s) \propto e^{\theta^{\top} \phi(s,a)/T}$
- Why the difference?
 - In TD, we want θ^Tφ(s, a) ≈ Q^π(s, a). We don't have the freedom to rescale it; i.e., if θ^Tφ(s, a) ≈ Q^π(s, a), then (2θ)^Tφ(s, a) ≠ Q^π(s, a).
 - We need an additional knob (T) to control the stochasticity of π
 - In PG, θ^Tφ(s, a) does not carry any meaning—it's totally possible that eventually we find a θ but θ^Tφ(s, a) ≠ Q^{πθ}(s, a)!
 - That's why we can absorb the temperature parameter in $\boldsymbol{\theta}$
 - Reflection of the agnosticity of PG

Derivation of PG

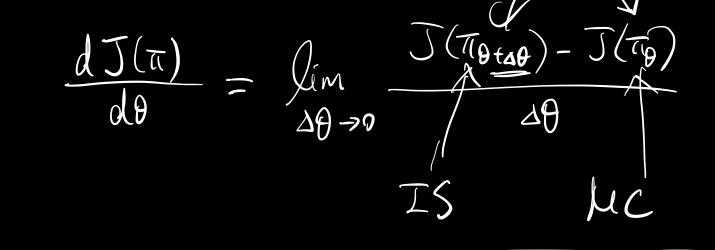
- Use $\tau := (s_1, a_1, r_1, \dots, s_H, a_H, r_H)$ to denote a trajectory (episodic)
- Use $\tau \sim \pi$ as a shorthand for distribution induced by π
- Let $R(\tau) := \sum_{t=1}^{H} \gamma^{t-1} r_t$ Ver 1: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi} R(\tau) \sum_{t=1}^{H} \nabla \log \pi(a_t | s_t)$ "*REINFORCE*"
 - Will derive using a "MC"-style proof
- Ver 2: $\nabla J(\pi) = \frac{1}{1-v} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)} [Q^{\pi}(s, a) \nabla \log \pi(a \mid s)]$
 - d^{π} is the normalized occupancy (from d_0 as init distribution)
 - Possible implementation: (1) roll out $\tau \sim \pi$, (2) pick a random time step t w.p. $\propto \gamma^{t-1}$, (3) $(\sum_{t'-t}^{H} \gamma^{t'-1} r_t) \nabla \log \pi(a_t | s_t)$
 - Note that $\mathbb{E}[\sum_{t'=t}^{H} \gamma^{t'-1} r_t | s_t, a_t] = Q^{\pi}(s_t, a_t)$
 - Take expectation over step (2) gives an alternative form: $\nabla J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=1}^{H} \left(\sum_{t'=t}^{H} \gamma^{t'-1} r_{t'} \right) \nabla \log \pi(a_t | s_t) \right]$
 - Will derive using a "DP"-style proof; can also be derived using the MC-style proof for ver 1

• Use
$$\tau := (s_{1}, a_{1}, \tau_{1}, ..., s_{H}, a_{H}, \tau_{H})$$
 to denote a trajectory (episodic)
• Use $\tau \sim \tau$ as a shorthand for distribution induced by π
• Left $R(\tau) := \sum_{k=1}^{H} \gamma^{k+1} r_{k}$
• Ver 1: $\nabla I(\pi) = \mathbb{E}_{\tau \sim \pi} [R(\tau) \sum_{k=1}^{H} \nabla \log \pi(a_{1}|s_{1})]$

$$= \nabla \left(\sum_{l} P^{\pi}(\tau) R(\tau)\right)$$

$$= \sum_{c} \left(\nabla_{0} \log P^{\pi_{0}}(\tau) R(\tau)\right)$$

 $\nabla \log \left[\left(0 \left(\alpha \right| s \right) \right] = \frac{e^{\Theta^{T} \phi(s, \alpha')}}{\sum_{\alpha'} e^{\Theta^{T} \phi(s, \alpha')}} \right]$ $= \sqrt{9} \left(\log \left(e^{0^{T} \phi(s, \iota)} \right) - \log \left(\sum_{\alpha'} e^{0^{T} \phi(s, \alpha')} \right) \right)$ $= \phi(s, \iota) - \frac{\sum_{\alpha'} e^{0^{T} \phi(s, \alpha')} \cdot \phi(s, \alpha')}{\sum_{\alpha'} e^{0^{T} \phi(s, \alpha')}}$ $= \phi(s, v) - E_{ann} [\phi(s, a')].$ $\mathcal{H}_{a} \sim_{\pi} [\cdot] = ?$ $\nabla J(\pi) = \left[\left(\sum_{t=1}^{H} \mathcal{Y}^{t-1} \mathcal{Y}_{t} \right) \left(\sum_{t=1}^{H} \nabla \log \pi \left(\mathcal{Q}_{t}(s_{t}) \right) \right] \right]$ $= \prod_{\pi} \left[\sum_{t=1}^{H} \left(\sum_{t=1}^{H} \left(\sum_{s \neq 1}^{t} \left(\sum_{s \neq 1}^{H} \left(\sum_{s \neq 1}^{H}$ $= \left[\left[\sum_{t=1}^{H} \nabla \log \tau_{1} (h_{t} | s_{t}) \sum_{t'=t}^{H} \gamma^{t'-1} \gamma_{t'} \right] \right]$



Yt' $= \underbrace{\underset{S_{t}, q_{t}}{\models}}_{F_{t}, q_{t}} \underbrace{\underset{T_{t} = 1}{\models}}_{T_{t}} \underbrace{\underset{T_{t} = 1}{f_{t}}}_{T_{t}} \underbrace{\underset{T_{t} = 1}{f_{t}}} \underbrace{$ \bigotimes $\sum_{t=1}^{n} \sum_{s,a,d} \left[\nabla \log \pi(a|s) - Q^{\pi}(s,a) \right]$ $= (1-\delta) \cdot \sum_{t=1}^{H} d_{t}^{\pi} \left[\sum_{s \in \mathcal{S}} \log \alpha \left(h(s) \right) \cdot \underbrace{Q^{\pi}(s, q)}_{s} \right]$ $\tilde{\#}[f] = 2$ E_b[f] Ep+8[P]. ÷

Q = L, Q = R. $Q^{*}(s,L) \approx \Theta_{L}^{T} \Psi(s)$ $Q^*(s, R) \simeq$ $O_R^T \Psi(s)$ $Q^{\star}(S, \bullet)$ $0^{\top} \phi(s, z)$ OL OR \$(G,G) $\phi(s, \mathcal{R}) = \begin{bmatrix} 0 \\ \psi(s) \end{bmatrix}.$ - Y(s) 0 $\phi(s, L)$ · [4(s)] Per l (D.... 0 $S_{\pm}=S, \ \alpha_{\pm}=/$

Pros & Cons of PG, and beyond

- Standard PG is fully on-policy, and it's hard to reuse data
 - after each update step, the policy changes and we need to generate MC trajectories from the new policy
- in practice, it suffers from noisy gradient estimate
- Blend PG with value-based method:
 - $\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)} [Q^{\pi}(s, a) \nabla \log \pi(a \mid s)]$
 - Instead of using MC estimate $\sum_{t'=t}^{H} \gamma^{t'-1} r_t$ for $Q^{\pi}(s_t, a_t)$, use an approximate value-function $\hat{Q}^{\pi}(s_t, a_t)$, often trained by TD
 - e.g., using expected Sarsa—can leverage previous (off-policy) data to learn $\hat{Q}^{\pi}(s_t,a_t)$
 - "Actor-critic": the parametrized policy is called the actor, and the value-function estimate is called the critic

Baseline in PG • $\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)} [Q^{\pi}(s, a) \nabla \log \pi(a | s)]$ For any $f: S \to \mathbb{R}$, $\nabla J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)}[(Q^{\pi}(s, a) - f(s)) \nabla \log \pi(a \mid s)]$ • for any s, $\mathbb{E}_{a \sim \pi(s)}[f(s) \nabla \log \pi(a | s)] = f(s) \cdot \mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a | s)] = 0$ • proof: $\mathbb{E}_{a \sim \pi(s)}[\nabla \log \pi(a \mid s)] = \sum_{a} \pi(a \mid s) \nabla \log \pi(a \mid s)$ $=\sum_{a} \nabla \pi(a|s) = \nabla \sum_{a} \pi(a|s) = \nabla \mathbf{1} = \mathbf{0}^{*}$ Tra $Q^{T}(S, G) -)/^{T}(C)$ One choice: $f = V^{\pi}(s)$ • $\nabla J(\pi) = \frac{1}{1 - v} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)} [A^{\pi}(s, a) \nabla \log \pi(a \mid s)]$

• recall that A is the advantage function

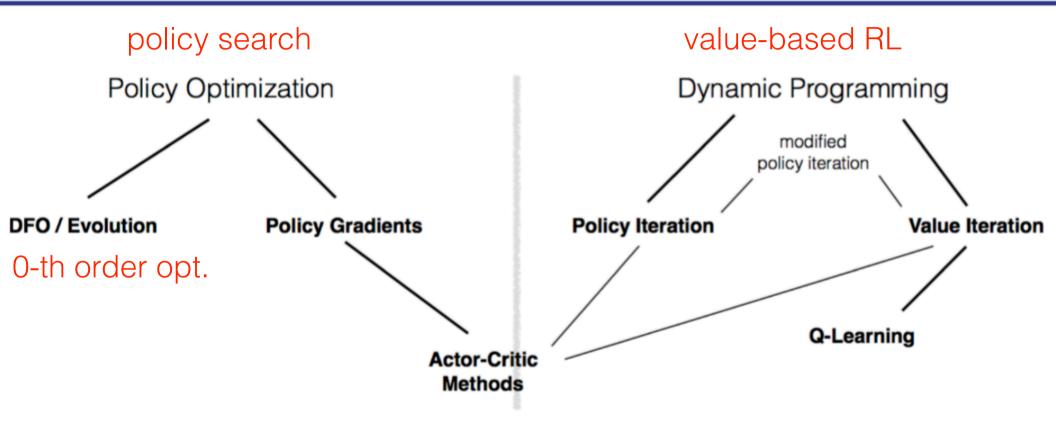
Comparing AC with Policy Iteration

- $\nabla J(\pi) \approx \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)}[\hat{Q}^{\pi}(s, a) \nabla \log \pi(a \mid s)]$
- A different but related procedure: freeze π, update the parameter of another policy π' (whose parameters are θ') by
 θ' ← θ'+α · 1/(1-γ) E_{s~d^π,a~π(s)}[Q^π(s, a) ∇log π'(a|s)]
 - gradient = 0 at $\pi' = \pi_{Q^{\pi}} =>$ policy iteration
- This can run into serious issues
 - Tabular PI theory assumes that we get \hat{Q}^{π} that is accurate for every single state-action pair
 - Simply unrealistic if problem is complex and we can only rollout trajectories (instead of sweeping the entire state space)
 - in the middle of learning, part of the state space may be under-explored
 - at best we can hope \hat{Q}^{π} to be accurate under distribution of state space we have data for

Comparing AC with Policy Iteration

- $\nabla J(\pi) \approx \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi(s)}[\hat{Q}^{\pi}(s, a) \nabla \log \pi(a \mid s)]$
- A different but related procedure: freeze π, update the parameter of another policy π' (whose parameters are θ') by
 θ' ← θ'+α · 1/(1-γ) E_{s~d^π,a~π(s)}[Q^π(s, a) ∇log π'(a|s)]
 - gradient = 0 at $\pi' = \pi_{Q^{\pi}} =>$ policy iteration
- This can run into serious issues
 - (cont.) if π' visits new states, \hat{Q}^{π} may be highly inaccurate in those states, and policy improvement no longer holds
- Perhaps better idea: move π' a little more but not too far from π , so that their state occupancies are still similar.
- Theory: CPI [Kakade & Langford'02]
- Modern implementations & variants: TRPO, PPO, etc

RL Algorithms Landscape



Slide Credit: Pieter Abbeel

Practical considerations

- Recall that one way to implement PG/AC is:
 - 1. roll out $\tau \sim \pi$,
 - 2. gradient from step *t*: $Q^{\pi}(s_t, a_t) \nabla \log \pi(a_t | s_t)$
 - 3. sum up the gradients from all time steps, with weight $\propto \gamma^{t-1}$,
- What if a trajectory length >> $1/(1 \gamma)$?
 - Most of the data points are wasted!
- Deep RL implementation in Atari games:
 - Trajectory length = $\sim 5 \text{ min}$
 - Effective horizon = secs $\gamma = 0.99$, frame rate 60Hz \Rightarrow effective horizon = O(1/(1- γ) * 1/60)) = ~ sec

Practical considerations

- Actual implementation:
 - 1. roll out $\tau \sim \pi$,
 - 2. gradient from step $t: Q^{\pi}(s_t, a_t) \nabla \log \pi(a_t | s_t)$
 - 3. put equal weights on gradients from all time steps
- Pro: use all data points; Con: biased gradient.
- Is there no discounting then?
 - $Q^{\pi}(s_t, a_t)$ is still learned using γ (e.g., by TD in actor-critic)
- How to understand/make sense of this?

