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Policy Gradient (PG)
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• Given a class of parameterized policies πθ, optimize 
 
• We will often make the dependence of πθ on θ implicit, i.e., 

when we write π we mean πθ in this part of the course 
• Simple idea: can run (stochastic) gradient descent if we can 

obtain (an unbiased estimate of)   
• will abbreviate as   

• Beautiful result: an unbiased estimate can be obtained from a 
single on-policy trajectory, without using knowledge of P and R of 
the MDP! 

• Has a strong connection to IS 
• “Vanilla” PG (e.g., REINFORCE) is considered a Monte-Carlo 

method—it does not leverage Bellman equation

J(πθ) := 𝔼s∼d0
[Vπθ(s)]

∇θJ(πθ)
J(π)



Why PG?
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• RL methods can be categorized according to what we try to 
approximate: model-based RL, value-based RL, policy search 

• Eventually we only care about a good policy! 
• value-based RL is indirect (model-based even more) 
• If a value function induces a good greedy policy, but the function 

itself severely violates Bellman equation, you won’t be able to find 
such a policy via value-based methods 

• In other words, policy search is agnostic against misspecification 
of function approximation 
• Apart from difficulties in optimization, there is nothing that 

prevents policy search from finding the best policy in class 
• Value- (and model-) based methods have their advantages—will 

come back later



Example of policy parametrization
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• Linear + softmax: 
• Featurize state-action:   
• Policy:   

• Recall that in SARSA we’ve also seen the softmax policy 
• There we include a temperature parameter,   
• Why the difference? 

• In TD, we want  . We don’t have the freedom to 
rescale it; i.e., if  , then  .  

• We need an additional knob (T) to control the stochasticity of π 
• In PG,   does not carry any meaning—it’s totally 

possible that eventually we find a   but  ! 
• That’s why we can absorb the temperature parameter in   
• Reflection of the agnosticity of PG

ϕ : S × A → ℝd

π(a |s) ∝ eθ⊤ϕ(s,a)

π(a |s) ∝ eθ⊤ϕ(s,a)/T

θ⊤ϕ(s, a) ≈ Qπ(s, a)
θ⊤ϕ(s, a) ≈ Qπ(s, a) (2θ)⊤ϕ(s, a) ≠ Qπ(s, a)

θ⊤ϕ(s, a)
θ θ⊤ϕ(s, a) ≠ Qπθ(s, a)

θ



Derivation of PG
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• Use   to denote a trajectory (episodic) 
• Use    as a shorthand for distribution induced by π 
• Let   
• Ver 1:   

• Will derive using a “MC”-style proof 
• Ver 2:   

• dπ is the normalized occupancy (from d0 as init distribution) 
• Possible implementation: (1) roll out  , (2) pick a random 

time step t w.p. , (3)   
• Note that   
• Take expectation over step (2) gives an alternative form:

  
• Will derive using a “DP”-style proof; can also be derived using 

the MC-style proof for ver 1

τ := (s1, a1, r1, …, sH, aH, rH)

τ ∼ π
R(τ) := ∑H

t=1 γt−1rt

∇J(π) = 𝔼τ∼π[R(τ)∑H
t=1∇ log π(at |st)]

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

τ ∼ π
∝ γt−1 (∑H

t′ =t γt′ −1rt)∇ log π(at |st)

𝔼[∑H
t′ =t γt′ −1rt |st, at] = Qπ(st, at)

∇J(π) = 𝔼τ∼π[∑
H
t=1 (∑H

t′ =t γt′ −1rt′ )∇ log π(at |st)]











Pros & Cons of PG, and beyond
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• Standard PG is fully on-policy, and it’s hard to reuse data 
• after each update step, the policy changes and we need to 

generate MC trajectories from the new policy 
• in practice, it suffers from noisy gradient estimate 
• Blend PG with value-based method:  

•   

• Instead of using MC estimate   for  , use an 
approximate value-function  , often trained by TD 

• e.g., using expected Sarsa—can leverage previous (off-policy) 
data to learn   

• “Actor-critic”: the parametrized policy is called the actor, and 
the value-function estimate is called the critic

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

∑H
t′ =t γt′ −1rt Qπ(st, at)

Q̂π(st, at)

Q̂π(st, at)



Baseline in PG
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•   

• For any  ,    

• for any s,   
• proof:  

  
• One choice:   

•   

• recall that A is the advantage function

∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[Qπ(s, a)∇ log π(a |s)]

f : S → ℝ ∇J(π) = 1
1 − γ𝔼s∼dπ,a∼π(s)[(Qπ(s, a) − f(s))∇ log π(a |s)]

𝔼a∼π(s)[f(s)∇ log π(a |s)] = f(s) ⋅ 𝔼a∼π(s)[∇ log π(a |s)] = 0

𝔼a∼π(s)[∇ log π(a |s)] = ∑a π(a |s)∇ log π(a |s)
= ∑a∇π(a |s) = ∇∑a π(a |s) = ∇1 = 0

f = Vπ(s)
∇J(π) = 1

1 − γ𝔼s∼dπ,a∼π(s)[Aπ(s, a)∇ log π(a |s)]



Comparing AC with Policy Iteration
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•   

• A different but related procedure: freeze π, update the parameter 
of another policy π’ (whose parameters are  ) by
  

• gradient = 0 at    =>  policy iteration 
• This can run into serious issues 

• Tabular PI theory assumes that we get   that is accurate for 
every single state-action pair 

• Simply unrealistic if problem is complex and we can only roll-
out trajectories (instead of sweeping the entire state space) 

• in the middle of learning, part of the state space may be 
under-explored 

• at best we can hope   to be accurate under distribution of 
state space we have data for

∇J(π) ≈ 1
1 − γ𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π(a |s)]

θ′ 

θ′ ← θ′ +α ⋅ 1
1 − γ 𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π′ (a |s)]

π′ = πQπ

Q̂π

Q̂π



Comparing AC with Policy Iteration
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•   

• A different but related procedure: freeze π, update the parameter 
of another policy π’ (whose parameters are  ) by
  

• gradient = 0 at    =>  policy iteration 
• This can run into serious issues 

• (cont.) if π’ visits new states,   may be highly inaccurate in 
those states, and policy improvement no longer holds 

• Perhaps better idea: move π’  a little more but not too far from π, 
so that their state occupancies are still similar.  

• Theory: CPI [Kakade & Langford’02] 
• Modern implementations & variants: TRPO, PPO, etc

∇J(π) ≈ 1
1 − γ𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π(a |s)]

θ′ 

θ′ ← θ′ +α ⋅ 1
1 − γ 𝔼s∼dπ,a∼π(s)[Q̂π(s, a)∇ log π′ (a |s)]

π′ = πQπ

Q̂π
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Slide Credit: Pieter Abbeel

policy search

0-th order opt.

value-based RL



Practical considerations
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• Recall that one way to implement PG/AC is: 
1. roll out  ,  
2. gradient from step t:   
3. sum up the gradients from all time steps, with weight , 

• What if a trajectory length >>  ? 
• Most of the data points are wasted! 

• Deep RL implementation in Atari games:  
• Trajectory length = ~5 min 
• Effective horizon = secs 

 γ = 0.99, frame rate 60Hz ⇨ effective horizon = O( 1/(1-γ) * 1/60) ) = ~ sec

τ ∼ π
Qπ(st, at)∇ log π(at |st)

∝ γt−1

1/(1 − γ)



• Actual implementation: 
1. roll out  ,  
2. gradient from step t:   
3. put equal weights on gradients from all time steps 

• Pro: use all data points; Con: biased gradient. 
• Is there no discounting then? 

•   is still learned using   (e.g., by TD in actor-critic) 
• How to understand/make sense of this?

τ ∼ π
Qπ(st, at)∇ log π(at |st)

Qπ(st, at) γ
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Practical considerations


