Importance Sampling

(ref: notes on course website;
not all contents in notes are covered in class)




Motivating scenario: oftf-policy evaluation

Given m, estimate J(x) := k., [V*(s)]

Alg outputs some scalar v; accuracy measured by |v - J(17)]

Previously we solved this problem by on-policy MC
What if we have data collected using some other po
* Likely the case when we try to evaluate a trained

[o}Y; Tt 7

oolicy using

historical data (only meaningful for “real-life” app of RL)

There are approaches you can already take from what we have

learned so far

* e.g., run expected Sarsa on the off-policy data, and output as

Y = [ESNdO[Q”(s, 7(s))] the estimate

* requires function approximation, and is in general biased

Is there an unbiased estimator?



Introduction to Importance Sampling (IS)

Suppose we are interested in estimating E,_ [ f(x)]

If we have x ~ p, f(x) would be an unbiased MC estimate

What it we can only sample x ~ g, but still want a “MC-style”
estimator?

IS (or importance weighted, or inverse propensity score (IPS)

estimator): &f( )

g(x)
Unbiasedness;

[p( X) f(x)] Zq( )<Ef( )> = ) pWf(x) = E,. [f(0)]

X
& Importance weight (ratio), which “converts” the distribution

q(x)
from g (the data distribution) to p

E.., [@] = 1. always holds!
q(x)



Application in contextual bandit (CB)

CB: episodic MDP with H = 1. Actions have no long-term ettects.

Just optimize the |

mmediate reward.

* x ~ do: context distribution (corresponds to initial state
distribution of the MDP)

* agent takes an

action a based on x

* agent observes reward r ~ R(x, a)

* (episode terminates; no next-state)

The off-policy eva

uation problem

* We have collected a dataset (a bag of (x, a, r) tuples), where

a ~ 1ip(s) (1p IS S

‘ochastic)

» want to know J(r) :=E _[r]

* The 7t in the subscript is short for x ~ do, a ~ 77, r ~ R(x, a)

* Let 7w be also stochastic (can be deterministic)



Application in contextual bandit (CB)

ne data point is a tuple (x, a, r)

ne function of interest is (x, a, r)pr target policy

ne distribution of interestis x ~do, a ~ 7, r ~ R(x, a)

* Let the joint density be p(x, 4, 7) iy behavior/logging policy

The data distribution is x ~ do, a ~ 71, ¥ ~ R(x, a)

* Let the joint density be g(x, a, )
p(x,a,r)
q(x,a,r) T E my(a|x)
Write down the densities

|S estimator: m(a|x) :

* p(x,a,r)=do(x)  t(alx)  R(rlx, a)
* g(x,a,r)=do(x) walx)  R(rlx, a)

* Jo compute importance weight, you don't need knowledge of
u or R! You just need 1, (or even just mp(al x), “proposal prob.”)



Application in contextual bandit (CB)

w(a|x)

Let p be a shorthand for , SO estimatoris p - r

mp(a | x)
* mpyneed to “cover’ m

* j.e., whenever t(alx) >0, we need mp(alx) >0
* A special case:

* 7is deterministic, and mpis uniformly random (mp(al x) =1/|A))
lla = n(x)]
/Al
* only look at actions that match what = wants to take, and
discard other data points

* |t match, p =|A|; mismatch: p =0

* On average: only 1/]A| portion of the data is useful

* Variance of p is O(]A])



A note about using IS

* We know that shifting rewards do not matter (for planning
purposes) for fixed-horizon problems

* However, when you apply IS, shifting rewards do impact the
variance of the estimator

e Special case:
* deterministic 7z, uniformly random 7y,

* reward is deterministic and constant: regardless of (x,a),
reward is always 1 (without any randomness)

* We know the value of any policy is 1
* On-policy MC has O variance
* |S still has high variance!




A note about using IS

e \Where does variance come from?

1 & ”a(i) — JZ'X(i) . no () — (] . &
_Z | (x*)] -r(’)zz [a" = 7n(x")] - r
*oni= 1/]A| n/|Al|

— r(l)
nl|Aj| Z

i:aV=n(x®)

=1

 Find all "matched” data points, sum their rewards, then...
* normalize by the expected # matched data points n/|A]

* You might think we should normalize by the actual # matched
data points observed in data...

* This is what weighted IS does (not required)

* (Generally a biased (but consistent) estimator, but much lower
variance in some cases



Example Application: Off-policy TD(0)

Recall that TD(0) is on-policy
How to derive its off-policy version?

Data: (s, a, r, s”) where a~7;(s), but we want to learn V™

TD(0) target: r+yV(s) => learns V'
m(als)

Off-policy TD(0) target: (r +yV(s"))

my(als)




10

Multi-step IS In

MDPs

* Data: trajectories starting from si~u using 7 (i.e., ar ~ 7u(st) )

(s©,a®,r0, 50, 5O a® rOyn

(for simplicity, assume process terminates in H time steps)

» Want to estimate J(7) := E,._, [V"(s)!

e Same idea as in bandit: apply IS to t

ne entire trajectory
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Application in MDPs

The data point is 7 := (s, ay, rq, ..., Sy, Ay, Try)
The function of interestis 7~ > y"'r,

Let the distribution of trajectory induced by 7t be p(t)

Let the distribution of trajectory induced by 7, be g(t)
@) < e

g(0) —

IS estimator:

¥

Write down the densities (assume deterministic reward for

simplicity)

o p(r) =dy(sy) - n(ay|sy) - P(sy|sp,ay) - w(ay| sy)--P(sy| Sy_1, ar_y1) - 7(ay| sy)

o q(r) =dy(s)) - m(ay|s;) - P(s,|sq, al) 7 (ay | 85) - P(Sgy| Sg_1> ag—_1) - mpag | sy)
(a5 - PO

Let p, = =
- s " g” P
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Examine the special case again

7t is deterministic, and mpis uniformly random (m(alx) =1/]A))
Illa, = 7(s,)]
Py =
1/]|A]

only look at trajectories where all actions happen to match what 7
wants to take

* If match, p = |AJ"; mismatch: p = 0

On average: only 1/]A}” portion of the data is useful

* (When state space is unboundedly large, can prove that |A["is
inevitable; a version of “curse of horizon” in RL)

When horizon is long, mostly applied when 7 and i, are close to
each other
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An obvious improvement: step-wise IS

H
“trajectory-wise” |1S: p,.5 ( Z }/t_lrt>

=1
|dea: estimate the expected reward for each time step t, and then
add them up

: H —

e 1.6, J(n) = thlyt 'Elr,|s; ~ dy, 7]

» When estimating E[r,|s ~ d, ], we know that decisions made
after time step t are irrelevant; truncate at time step ¢

» Improved estimator: ¥ - py, -7,

* Equivalent to trajectory-wise IS when intermediate rewards are
all 0



