
Importance Sampling

(ref: notes on course website;  

not all contents in notes are covered in class)
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• Given π, estimate  
• Alg outputs some scalar v; accuracy measured by |v - J(π)|

• Previously we solved this problem by on-policy MC

• What if we have data collected using some other policy π0?


• Likely the case when we try to evaluate a trained policy using 
historical data (only meaningful for “real-life” app of RL)


• There are approaches you can already take from what we have 
learned so far

• e.g., run expected Sarsa on the off-policy data, and output as 

 the estimate

• requires function approximation, and is in general biased


• Is there an unbiased estimator?

J(π) := 𝔼s∼d0
[Vπ(s)]

v = 𝔼s∼d0
[Q̂π(s, π(s))]

Motivating scenario: off-policy evaluation
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• Suppose we are interested in estimating 

• If we have ,  would be an unbiased MC estimate

• What if we can only sample , but still want a “MC-style” 

estimator?

• IS (or importance weighted, or inverse propensity score (IPS) 

estimator): 


• Unbiasedness: 

• : Importance weight (ratio), which “converts” the distribution 

from q (the data distribution) to p

• : always holds!

𝔼x∼p[ f(x)]

x ∼ p f(x)
x ∼ q

p(x)
q(x)

f(x)

𝔼x∼q [ p(x)
q(x)

f(x)] = ∑
x

q(x)( p(x)
q(x)

f(x)) = ∑
x

p(x)f(x) = 𝔼x∼p[ f(x)]

p(x)
q(x)

𝔼x∼q [ p(x)
q(x) ] ≡ 1

Introduction to Importance Sampling (IS)



Application in contextual bandit (CB)
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• CB: episodic MDP with H = 1. Actions have no long-term effects. 
Just optimize the immediate reward.

• x ~ d0: context distribution (corresponds to initial state 

distribution of the MDP)

• agent takes an action a based on x

• agent observes reward r ~ R(x, a)
• (episode terminates; no next-state)


• The off-policy evaluation problem

• We have collected a dataset (a bag of (x, a, r) tuples), where  

a ~ πb(s) (πb is stochastic)

• want to know 

• The π in the subscript is short for x ~ d0, a ~ π, r ~ R(x, a)

• Let π be also stochastic (can be deterministic)

J(π) := 𝔼π[r]



Application in contextual bandit (CB)
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• The data point is a tuple (x, a, r)

• The function of interest is (x, a, r) ↦ r
• The distribution of interest is x ~ d0, a ~ π, r ~ R(x, a)

• Let the joint density be p(x, a, r)

• The data distribution is x ~ d0, a ~ πb, r ~ R(x, a)

• Let the joint density be q(x, a, r)


• IS estimator: 


• Write down the densities

• p(x, a, r) = d0(x) · π(a|x) · R(r|x, a)
• q(x, a, r) = d0(x) · πb(a|x) · R(r|x, a)
• To compute importance weight, you don’t need knowledge of 
μ or R! You just need πb (or even just πb(a|x), “proposal prob.”)

p(x, a, r)
q(x, a, r)

⋅ r =
π(a |x)
πb(a |x)

⋅ r

π: target policy

πb: behavior/logging policy



Application in contextual bandit (CB)
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• Let ρ be a shorthand for , so estimator is ρ · r


• πb need to “cover” π

• i.e., whenever π(a|x) > 0, we need πb(a|x) > 0


• A special case: 

• π is deterministic, and πb is uniformly random (πb(a|x) ≡ 1/|A|)

•

• only look at actions that match what π wants to take, and 
discard other data points


• If match, ρ = |A|; mismatch: ρ = 0

• On average: only 1/|A| portion of the data is useful

• Variance of ρ is O(|A|)

π(a |x)
πb(a |x)

𝕀[a = π(x)]
1/ |A |

⋅ r



A note about using IS
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• We know that shifting rewards do not matter (for planning 
purposes) for fixed-horizon problems


• However, when you apply IS, shifting rewards do impact the 
variance of the estimator


• Special case: 

• deterministic π, uniformly random πb , 

• reward is deterministic and constant: regardless of (x,a), 

reward is always 1 (without any randomness)

• We know the value of any policy is 1

• On-policy MC has 0 variance

• IS still has high variance! 



A note about using IS
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• Where does variance come from?


•




• Find all “matched” data points, sum their rewards, then…

• normalize by the expected # matched data points n/|A|


• You might think we should normalize by the actual # matched 
data points observed in data…

• This is what weighted IS does (not required)

• Generally a biased (but consistent) estimator, but much lower 

variance in some cases

1
n

n

∑
i=1

𝕀[a(i) = π(x(i))]
1/ |A |

⋅ r(i) =
n

∑
i=1

𝕀[a(i) = π(x(i))] ⋅ r(i)

n / |A |

=
1

n / |A | ∑
i:a(i)=π(x(i))

r(i)



Example Application: Off-policy TD(0)
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• Recall that TD(0) is on-policy

• How to derive its off-policy version?

• Data: (s, a, r, s’) where a~πb(s), but we want to learn Vπ

• TD(0) target:  => learns Vπb


• Off-policy TD(0) target: 

r + γV(s′￼)
π(a |s)
πb(a |s)

(r + γV(s′￼))



Multi-step IS in MDPs

• Data: trajectories starting from s1~μ using πb (i.e., at ~ πb(st) ) 
                       
(for simplicity, assume process terminates in H time steps)


• Want to estimate 


• Same idea as in bandit: apply IS to the entire trajectory

{(s(i)
1 , a(i)

1 , r(i)
1 , s(i)

2 , …, s(i)
H , a(i)

H , r(i)
H )}n

i=1

J(π) := 𝔼s∼d0
[Vπ(s)]

10



Application in MDPs
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• The data point is 

• The function of interest is 
• Let the distribution of trajectory induced by π be p(τ)

• Let the distribution of trajectory induced by πb be q(τ)


• IS estimator: 


• Write down the densities (assume deterministic reward for 
simplicity)

•

•

• Let , then 

τ := (s1, a1, r1, …, sH, aH, rH)

τ ↦ ∑H
t=1 γt−1rt

p(τ)
q(τ)

⋅
H

∑
t=1

γt−1rt

p(τ) = d0(s1) ⋅ π(a1 |s1) ⋅ P(s2 |s1, a1) ⋅ π(a2 |s2)⋯P(sH |sH−1, aH−1) ⋅ π(aH |sH)
q(τ) = d0(s1) ⋅ πb(a1 |s1) ⋅ P(s2 |s1, a1) ⋅ πb(a2 |s2)⋯P(sH |sH−1, aH−1) ⋅ πb(aH |sH)

ρt =
π(at |st)
πb(at |st)

p(τ)
q(τ)

=
H

∏
t=1

ρt =: ρ1:H



Examine the special case again
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• π is deterministic, and πb is uniformly random (πb(a|x) ≡ 1/|A|)

•

• only look at trajectories where all actions happen to match what π 
wants to take

• If match, ρ = |A|H; mismatch: ρ = 0


• On average: only 1/|A|H portion of the data is useful

• (When state space is unboundedly large, can prove that |A|H is 

inevitable; a version of “curse of horizon” in RL)

• When horizon is long, mostly applied when π and πb are close to 

each other

ρt =
𝕀[at = π(st)]

1/ |A |



An obvious improvement: step-wise IS
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• “trajectory-wise” IS: 


• Idea: estimate the expected reward for each time step t, and then 
add them up

• i.e., 

• When estimating , we know that decisions made 

after time step t are irrelevant; truncate at time step t

• Improved estimator: 

• Equivalent to trajectory-wise IS when intermediate rewards are 

all 0

ρ1:H (
H

∑
t=1

γt−1rt)

J(π) = ∑H
t=1 γt−1𝔼[rt |s1 ∼ d0, π]

𝔼[rt |s ∼ d0, π]

∑H
t=1 γt−1 ⋅ ρ1:t ⋅ rt


