Algorithms for control
reading: Sutton & Barto, Chap 10



Policy lteration from data

We have seen how to learn V™ from data (TD)

If we can learn Q7, then we can do control (policy optimization) by
running policy iteration

How to learn Q™? similar idea

Bellman eq for Q™ Q*(s,a) = R(s,a) + Yk p. Q" (s, (5]
Given (s, ay, 11, st+1, ar+1) Where all actions are taken according to
rt, update rule for learning Q™: “SARSA”

(s, a) < Qs a) + alr, +yO(s, 1, ap) — Qs a,))

* Do you need a;+17 check out: expected Sarsa.

In TD (for learning V™), we require that each state is visited
sufficiently often

Similarly, here we require that each state-action pair is visited
sufficiently often

T must be stochastic! (so we cannot run Pl exactly)



SARSA with epsilon-greedy policy

Q(Sza at) <« Q(Sza at) + a(rt + }/Q(SH-la az+1) T Q(Sp a;))
Take epsilon-greedy policy w.r.t the current Q-estimate

* At each time step t, with probability €, choose a; from the action
space uniformly at random. otherwise, a;= argmax, Q(s, a)

Greedy part: “no-wait” version of policy improvement. Take
greedy action w.r.t. Q every time step!

* the policy being evaluated is constantly changing
* “e-greedy policy” is not a fixed policy

e part: make sure to explore all actions

Precisely speaking, this is SARSA(O)

 Can be extended to SARSA(A) just as TD



Does SARSA converge to optimal policy?

* The epsilon part can prevent convergence!
* The cliff example (pg 132 of Sutton & Barto)

* Deterministic navigation, high penalty when talling off the cliff

* Optimal policy: walk near the cliff

* Unless epsilon is super small, SARSA will avoid the cliff

* Will need to reduce € over time—»but small € does not sufficiently

explore, and Q-value estimates converge slower

S

T h e

Cliff

safe path

optimal path



SARSA with epsilon-greedy policy

* g-greedy can be replaced by softmax: chooses action a with
eQ(St,a)/T

Z ,eQ(st,a’)/T’
a
decrease over time (playing a role similar to € in e-greedy)

* Can use other stochastic policy that assigns most probability to
the greedy action and explore all other actions at the same time

e Exercise: derive SARSA with function approximation

probabillity here T Is temperature and needs to



Q-learning

We've seen how to derive a control algorithm (SARSA) based on
the idea of policy iteration (or Bellman eq. for policy eval)

How about value iteration (Bellman optimality eq.)?
Q*(Sa Cl) — R(S9 Cl) + }/[Es’NP(S,a) :maX Q*(Sla Cl/)]

a

Update rule:
O(sy, a;) < Qs a) + ar; +y max Q(s,, y, a’) — Q(s,, a))

Algorithms for control always have a "max” somewhere
* the max in Q-learning is explicit in the update rule

e Exercise: where is the “max” in SARSA?
O@s,a,) < Qs a) + a(r, +y0O(s,,1, a,.1) — O(s;, a,))




Q-learning

* Q-learning does not specify how a; should be taken

* Q-learning is off-policy: how we take actions have nothing to
do with our current Q-estimate (or its greedy policy)

* Learning rule is completely disentangled from the exploration
rule (how to take actions during data collection). Explore
however you want using a “behavior policy”

* e.g., uniformly random action, or e-greedy (here you do not
need to reduce €)

* Exercise: think about how Q-learning behaves in the cliff example

R=-1 safe path

1 optimal path




Connection between Q-learning and SARSA

» Expected sarsa: O(s,, a,) < O(s,, a,) + a(r, + yQ(s,, 1, ©) — O(s,, a,))
» recall that when 7 is stochastic, Q(s, n) := k.15 Q(s; @)]
* Expected sarsa can be run off-policy!

* Sarsa needs to be on-policy because we use a1 from data;

this action needs to be consistent with T according to Bellman
equation

* If we replace it with the expectation (i.e., “imagined” action that
is not actually taken in the environment), it removes any
restriction on the behavior policy

* (Insight due to Rich Sutton): Q-learning is a special case of
expected Sarsa! Which policy are we evaluating?



Exercise: Multi-step Q-learning?

. Does the target r, + yr,, | + y*max Q(s,, ,, a’) work? If not, why?

a

* Consider the expected target conditioned on s;, a; . Express it
using standard Bellman update operators

* Give away: the expected target is (7T Q))(s, a,), where 7t is
behavior policy



10

Q-learning with experience replay

So far most algorithms we see are “one-pass”
* |.e., Use each data point once and discard them
* # updates = # data points

Concern 1: We need many updates for optimization to converge.
Can we separate optimization from data collection?

Concern 2: Need to reuse data if sample size is limited

Q-learning as an example: suppose we are given a bag of
(s, a, r,s") tuples and we cannot collect further data, what to do?

Sample (with replacement) a tuple randomly from the bag, and
apply the Q-learning update rule.

* # updates >> # data points
Converges with appropriate learning rate
* (Guess what it converges to”

* Model-based RL!



11

Q-learning with function approximation

 As before, we first derive the batch version

Approximate Q* using a (parameterized) function class F

Want to approximate Bellman update operator using data (a bag
of (s, a, r, s”) tuples)

Fitted Q-lteration (FQI):

fip1 < argming g Y s So(S: @) = =y max,, fi(s’ a’))?
Q-learning with function approximation

0 —0—a-(fs,a)—r—y IIla/Xf@(S', a’)) Vi (s,a)

Exercise: this is Q-learning when using tabular function class

Similar to TD, we only take gradient on f,(s, a) and ignore f,(s', a’),
because the latter is treated as a constant (it plays the role of f)



12

Quick Recap of the TD Part

How to go from a Bellman upda

e operator to a learning rule?

1. Write down the Bellman up o
* .0, 0. < I, If we want

0 for the thing you want to learn
to learn O~

2. Write down the detailed equation for a single s (or (s,a))
° Qk-|—1(S9 a) « R(S9 Cl) + y[ES’NP(S,a)[Qk(S/9 T[(S/)]

3. Replace the expectations wit

h their sampled version to form the

target (assuming datais (s, a, r, s’, a’))
e target: r +y0(s’, n(s")) (expected Sarsa)
e alternative target: r + yO(s',a’) it on-policy (a’ ~ #(s"))

4. Online tabular ver: Plug into the template

* 0(s,a) < O(s,a) + a(target — (s, a))
5. Batch function approximation ver: run least sq regression on

o {(s,a) — target}



13

Quick Recap of the TD Part

Another example: TD(0)
1. Write down the Bellman up op for the thing you want to learn

* Vil < IV,
2. Write down the detailed equation for a single s (or (s,a))
* Vig1(s) < R(s, () + Yy p(s zisyl Vils]

3. Replace the expectations with their sampled version to form the
target (assuming datais (s, a, 7, s))

e farget: r+ yV(s’)

* Be careful! This is only a sampled version of above if on-policy
(@ ~ n(s))

* Difference between learning V and Q: learning vV* has to be on-

policy (for now), but learning Q* can be easily off-policy
(expected sarsa)



