
Algorithms for control

reading: Sutton & Barto, Chap 10
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• We have seen how to learn Vπ from data (TD)

• If we can learn Qπ, then we can do control (policy optimization) by 

running policy iteration

• How to learn Qπ? similar idea

• Bellman eq for Qπ: 
• Given (st, at, rt, st+1, at+1) where all actions are taken according to 
π, update rule for learning Qπ: “SARSA”  



• Do you need at+1? check out: expected Sarsa.


• In TD (for learning Vπ), we require that each state is visited 
sufficiently often


• Similarly, here we require that each state-action pair is visited 
sufficiently often


• π must be stochastic! (so we cannot run PI exactly)

Qπ(s, a) = R(s, a) + γ𝔼s′￼∼P(s,a)[Qπ(s′￼, π(s′￼)]

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))

Policy Iteration from data



SARSA with epsilon-greedy policy
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• 

• Take epsilon-greedy policy w.r.t the current Q-estimate


• At each time step t, with probability ε, choose at from the action 
space uniformly at random. otherwise, at = argmaxa Q(st, a)


• Greedy part: “no-wait” version of policy improvement. Take 
greedy action w.r.t. Q every time step! 

• the policy being evaluated is constantly changing

• “ε-greedy policy” is not a fixed policy


• ε part: make sure to explore all actions

• Precisely speaking, this is SARSA(0) 


• Can be extended to SARSA(λ) just as TD

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))



Does SARSA converge to optimal policy?
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• The epsilon part can prevent convergence!

• The cliff example (pg 132 of Sutton & Barto)


• Deterministic navigation, high penalty when falling off the cliff

• Optimal policy: walk near the cliff

• Unless epsilon is super small, SARSA will avoid the cliff


• Will need to reduce ε over time—but small ε does not sufficiently 
explore, and Q-value estimates converge slower



SARSA with epsilon-greedy policy
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• ε-greedy can be replaced by softmax: chooses action a with 
probability , here T is temperature and needs to 

decrease over time (playing a role similar to ε in ε-greedy)

• Can use other stochastic policy that assigns most probability to 

the greedy action and explore all other actions at the same time

• Exercise: derive SARSA with function approximation 

eQ(st,a)/T

∑a′￼
eQ(st,a′￼)/T



Q-learning
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• We’ve seen how to derive a control algorithm (SARSA) based on 
the idea of policy iteration (or Bellman eq. for policy eval)


• How about value iteration (Bellman optimality eq.)?


• 


• Update rule: 

• Algorithms for control always have a “max” somewhere

• the max in Q-learning is explicit in the update rule

• Exercise: where is the “max” in SARSA?

Q⋆(s, a) = R(s, a) + γ𝔼s′￼∼P(s,a)[max
a′￼

Q⋆(s′￼, a′￼)]

Q(st, at) ← Q(st, at) + α(rt + γ max
a′￼

Q(st+1, a′￼) − Q(st, at))

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))



Q-learning
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• Q-learning does not specify how at should be taken

• Q-learning is off-policy: how we take actions have nothing to 

do with our current Q-estimate (or its greedy policy)

• Learning rule is completely disentangled from the exploration 

rule (how to take actions during data collection). Explore 
however you want using a “behavior policy”


• e.g., uniformly random action, or ε-greedy (here you do not 
need to reduce ε)


• Exercise: think about how Q-learning behaves in the cliff example



Connection between Q-learning and SARSA
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• Expected sarsa: 
• recall that when π is stochastic, 

• Expected sarsa can be run off-policy! 

• Sarsa needs to be on-policy because we use at+1  from data; 

this action needs to be consistent with π according to Bellman 
equation


• If we replace it with the expectation (i.e., “imagined” action that 
is not actually taken in the environment), it removes any 
restriction on the behavior policy


• (Insight due to Rich Sutton): Q-learning is a special case of 
expected Sarsa! Which policy are we evaluating?

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, π) − Q(st, at))
Q(s, π) := 𝔼a∼π(⋅|s)[Q(s, a)]



Exercise: Multi-step Q-learning?
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• Does the target  work? If not, why?


• Consider the expected target conditioned on st, at . Express it 
using standard Bellman update operators


• Give away: the expected target is , where π is 
behavior policy

rt + γrt+1 + γ2 max
a′￼

Q(st+2, a′￼)

(𝒯π(𝒯Q))(st, at)



Q-learning with experience replay
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• So far most algorithms we see are “one-pass”

• i.e., use each data point once and discard them

• # updates = # data points


• Concern 1: We need many updates for optimization to converge. 
Can we separate optimization from data collection?


• Concern 2: Need to reuse data if sample size is limited

• Q-learning as an example: suppose we are given a bag of  

(s, a, r, s’) tuples and we cannot collect further data, what to do?

• Sample (with replacement) a tuple randomly from the bag, and 

apply the Q-learning update rule. 

• # updates >> # data points


• Converges with appropriate learning rate

• Guess what it converges to?

• Model-based RL!



Q-learning with function approximation
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• As before, we first derive the batch version

• Approximate Q* using a (parameterized) function class 

• Want to approximate Bellman update operator using data (a bag 

of (s, a, r, s’) tuples)

• Fitted Q-Iteration (FQI): 



• Q-learning with function approximation


•

• Exercise: this is Q-learning when using tabular function class
• Similar to TD, we only take gradient on  and ignore , 

because the latter is treated as a constant (it plays the role of fk)

ℱ

fk+1 ← arg minfθ∈ℱ ∑(s,a,r,s′￼) ( fθ(s, a) − r − γ maxa′￼ fk(s′￼, a′￼))2

θ ← θ − α ⋅ ( fθ(s, a) − r − γ max
a′￼

fθ(s′￼, a′￼))∇fθ(s, a)

fθ(s, a) fθ(s′￼, a′￼)



Quick Recap of the TD Part
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How to go from a Bellman update operator to a learning rule?

1. Write down the Bellman up op for the thing you want to learn


• e.g.,  if we want to learn 

2. Write down the detailed equation for a single s (or (s,a))


• 


3. Replace the expectations with their sampled version to form the 
target (assuming data is (s, a, r, s’, a’))


• target:   (expected Sarsa)

• alternative target:  if on-policy ( )


4. Online tabular ver: Plug into the template

• 


5. Batch function approximation ver: run least sq regression on 

•

Qk+1 ← 𝒯πQk Qπ

Qk+1(s, a) ← R(s, a) + γ𝔼s′￼∼P(s,a)[Qk(s′￼, π(s′￼)]

r + γQ(s′￼, π(s′￼))

r + γQ(s′￼, a′￼) a′￼∼ π(s′￼)

Q(s, a) ← Q(s, a) + α(target − Q(s, a))

{(s, a) ↦ target}



Quick Recap of the TD Part
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Another example: TD(0)

1. Write down the Bellman up op for the thing you want to learn


• 

2. Write down the detailed equation for a single s (or (s,a))


• 


3. Replace the expectations with their sampled version to form the 
target (assuming data is (s, a, r, s’))


• target: 

• Be careful! This is only a sampled version of above if on-policy 

( )

• Difference between learning V and Q: learning  has to be on-

policy (for now), but learning  can be easily off-policy 
(expected sarsa)

Vk+1 ← 𝒯πVk

Vk+1(s) ← R(s, π(s)) + γ𝔼s′￼∼P(s,π(s))[Vk(s′￼)]

r + γV(s′￼)

a ∼ π(s)

Vπ

Qπ


