
Algorithms for control 
reading: Sutton & Barto, Chap 10
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• We have seen how to learn Vπ from data (TD) 
• If we can learn Qπ, then we can do control (policy optimization) by 

running policy iteration 
• How to learn Qπ? similar idea 
• Bellman eq for Qπ: 
• Given (st, at, rt, st+1, at+1) where all actions are taken according to 
π, update rule for learning Qπ: “SARSA”  

 
• Do you need at+1? check out: expected Sarsa. 

• In TD (for learning Vπ), we require that each state is visited 
sufficiently often 

• Similarly, here we require that each state-action pair is visited 
sufficiently often 

• π must be stochastic! (so we cannot run PI exactly)

Qπ(s, a) = R(s, a) + γ𝔼s′ ∼P(s,a)[Qπ(s′ , π(s′ )]

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))

Policy Iteration from data



SARSA with epsilon-greedy policy
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•  
• Take epsilon-greedy policy w.r.t the current Q-estimate 

• At each time step t, with probability ε, choose at from the action 
space uniformly at random. otherwise, at = argmaxa Q(st, a) 

• Greedy part: “no-wait” version of policy improvement. Take 
greedy action w.r.t. Q every time step!  
• the policy being evaluated is constantly changing 
• “ε-greedy policy” is not a fixed policy 

• ε part: make sure to explore all actions 
• Precisely speaking, this is SARSA(0)  

• Can be extended to SARSA(λ) just as TD

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))



Does SARSA converge to optimal policy?
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• The epsilon part can prevent convergence! 
• The cliff example (pg 132 of Sutton & Barto) 

• Deterministic navigation, high penalty when falling off the cliff 
• Optimal policy: walk near the cliff 
• Unless epsilon is super small, SARSA will avoid the cliff 

• Will need to reduce ε over time—but small ε does not sufficiently 
explore, and Q-value estimates converge slower



SARSA with epsilon-greedy policy
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• ε-greedy can be replaced by softmax: chooses action a with 
probability , here T is temperature and needs to 

decrease over time (playing a role similar to ε in ε-greedy) 
• Can use other stochastic policy that assigns most probability to 

the greedy action and explore all other actions at the same time 
• Exercise: derive SARSA with function approximation 

eQ(st,a)/T

∑a′ 
eQ(st,a′ )/T



Q-learning
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• We’ve seen how to derive a control algorithm (SARSA) based on 
the idea of policy iteration (or Bellman eq. for policy eval) 

• How about value iteration (Bellman optimality eq.)? 

•  

• Update rule: 

• Algorithms for control always have a “max” somewhere 
• the max in Q-learning is explicit in the update rule 
• Exercise: where is the “max” in SARSA?

Q⋆(s, a) = R(s, a) + γ𝔼s′ ∼P(s,a)[max
a′ 

Q⋆(s′ , a′ )]

Q(st, at) ← Q(st, at) + α(rt + γ max
a′ 

Q(st+1, a′ ) − Q(st, at))

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))



Q-learning
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• Q-learning does not specify how at should be taken 
• Q-learning is off-policy: how we take actions have nothing to 

do with our current Q-estimate (or its greedy policy) 
• Learning rule is completely disentangled from the exploration 

rule (how to take actions during data collection). Explore 
however you want using a “behavior policy” 

• e.g., uniformly random action, or ε-greedy (here you do not 
need to reduce ε) 

• Exercise: think about how Q-learning behaves in the cliff example



Connection between Q-learning and SARSA
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• Expected sarsa: 
• recall that when π is stochastic, 

• Expected sarsa can be run off-policy!  
• Sarsa needs to be on-policy because we use at+1  from data; 

this action needs to be consistent with π according to Bellman 
equation 

• If we replace it with the expectation (i.e., “imagined” action that 
is not actually taken in the environment), it removes any 
restriction on the behavior policy 

• (Insight due to Rich Sutton): Q-learning is a special case of 
expected Sarsa! Which policy are we evaluating?

Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, π) − Q(st, at))
Q(s, π) := 𝔼a∼π(⋅|s)[Q(s, a)]



Exercise: Multi-step Q-learning?
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• Does the target  work? If not, why? 

• Consider the expected target conditioned on st, at . Express it 
using standard Bellman update operators 

• Give away: the expected target is , where π is 
behavior policy

rt + γrt+1 + γ2 max
a′ 

Q(st+2, a′ )

(𝒯π(𝒯Q))(st, at)



Q-learning with experience replay
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• So far most algorithms we see are “one-pass” 
• i.e., use each data point once and discard them 
• # updates = # data points 

• Concern 1: We need many updates for optimization to converge. 
Can we separate optimization from data collection? 

• Concern 2: Need to reuse data if sample size is limited 
• Q-learning as an example: suppose we are given a bag of  

(s, a, r, s’) tuples and we cannot collect further data, what to do? 
• Sample (with replacement) a tuple randomly from the bag, and 

apply the Q-learning update rule.  
• # updates >> # data points 

• Converges with appropriate learning rate 
• Guess what it converges to? 
• Model-based RL!



Q-learning with function approximation
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• As before, we first derive the batch version 
• Approximate Q* using a (parameterized) function class  
• Want to approximate Bellman update operator using data (a bag 

of (s, a, r, s’) tuples) 
• Fitted Q-Iteration (FQI): 

 
• Q-learning with function approximation 

•

• Exercise: this is Q-learning when using tabular function class
• Similar to TD, we only take gradient on  and ignore , 

because the latter is treated as a constant (it plays the role of fk)

ℱ

fk+1 ← arg minfθ∈ℱ ∑(s,a,r,s′ ) ( fθ(s, a) − r − γ maxa′ fk(s′ , a′ ))2

θ ← θ − α ⋅ ( fθ(s, a) − r − γ max
a′ 

fθ(s′ , a′ ))∇fθ(s, a)

fθ(s, a) fθ(s′ , a′ )



Quick Recap of the TD Part
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How to go from a Bellman update operator to a learning rule? 
1. Write down the Bellman up op for the thing you want to learn 

• e.g.,  if we want to learn  
2. Write down the detailed equation for a single s (or (s,a)) 

•  

3. Replace the expectations with their sampled version to form the 
target (assuming data is (s, a, r, s’, a’)) 

• target:   (expected Sarsa) 
• alternative target:  if on-policy ( ) 

4. Online tabular ver: Plug into the template 
•  

5. Batch function approximation ver: run least sq regression on  
•

Qk+1 ← 𝒯πQk Qπ

Qk+1(s, a) ← R(s, a) + γ𝔼s′ ∼P(s,a)[Qk(s′ , π(s′ )]

r + γQ(s′ , π(s′ ))

r + γQ(s′ , a′ ) a′ ∼ π(s′ )

Q(s, a) ← Q(s, a) + α(target − Q(s, a))

{(s, a) ↦ target}



Quick Recap of the TD Part
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Another example: TD(0) 
1. Write down the Bellman up op for the thing you want to learn 

•  
2. Write down the detailed equation for a single s (or (s,a)) 

•  

3. Replace the expectations with their sampled version to form the 
target (assuming data is (s, a, r, s’)) 

• target:  
• Be careful! This is only a sampled version of above if on-policy 

( ) 
• Difference between learning V and Q: learning  has to be on-

policy (for now), but learning  can be easily off-policy 
(expected sarsa)

Vk+1 ← 𝒯πVk

Vk+1(s) ← R(s, π(s)) + γ𝔼s′ ∼P(s,π(s))[Vk(s′ )]

r + γV(s′ )

a ∼ π(s)

Vπ

Qπ


