Value Prediction

with Function Approximation
Reading: Algs for RL (Szepesvari), Sec 3.2

Generalization for value prediction

* Major limitation of tabular RL: does not scale to large state space

most methods require that we run into the same state multiple
times

when the state space is large, you might not see the same
state even twice!

In other words: sample complexity scales with |S]
need generalization

* For value prediction problem, generalization requires that we
have some prior knowledge about the form the value function

linear function approximation: design features ¢(s) € R¢
(“featurizing states”), and approximate V*(s) ~ ' ¢(s)

* only unknown: 6. d unknowns vs |S| unknowns!

Example: linear function approximation for tetris

* An example teaturization:
* let the height of the pile in i-th column be the i-th teature
* dimensionality of feature = #columns
* (probably doesn’t work; just an example)

* Feature engineering requires a lot of prior knowledge, domain
insights, and trial and error, just as in supervised learning!

Monte-Carlo Value Prediction

Draw a starting state s; from the exploratory initial distribution, roll

out a trajectory using m from s;, and let G; be the (random)
discounted return

Collect {(si, Gi)} pairs
Least square regression: minH%Z?zl (HTqb(Si) — Gi)2
Why this works”?

* Assume {(si, Gi)} are i.i.d., let (s, G) be variables equal in
distribution

» The expected version of the objective: ming E, ;[(0'¢(s) — G)]

e |f we do not restrict ourselves to linear functions, the function
that minimizes this objective is s = E[G|s] (= V*(s))!

o |f true V*(s) happens to take linear form, the regression will find
it in the limit (of infinite data)

* Finite sample regime: bias & variance trade-off

Monte-Carlo Value Prediction

The same idea applies to non-linear value function approximation

More generally & abstractly, think of function approximation as
searching over a restricted function space, which is a set whose
members are functions that map states to real values.

Function space of linear value function approximation:
F ={Vy:0¢ R4} where Vy(s) = 0" p(s)
* typically only a small subset of all possible functions
* Using “all possible functions™ = tabular!

* Equivalently, tabular MC value prediction can be recovered by
choosing ¢ as the identity features ¢(s) = {I[s = 5]} yg

miny, e — 37| (V(s) = G
Plug in any function approximator of your choice
SGD: uniformly sampleiand @ <« 0 — a - (Vy(s;) — G;) - VV(s,)

TD(0) with function approximation

tabular: V(s,) « V(s,) + a(r, + yV(s,.;) — V()
When we update V(s,), the target is r, + yV(s,, 1)

Batch version of the algorithm: one Bellman update can be
approximated (using all data) as

1

T
V., < arg min — Vis)—r—yV,(s 2
or < arg i 22 0 (V) == 1Vids)

SGD + "no-wait™: 0 «— 0 —a - (Vy(s,) =1 —yVg(s,11)) - VVy(s,)
When using linear function approximation Vy(s) = #(s)'8, we have
0—0—-a- (¢(St)_r‘9 — = V¢(St+1)_r9) ‘ Cb(St)

When using chain rule, we only take gradient on V(s,) and ignore
Vy(s,,1); the latter is treated as a constant (it plays the role of Vi)

What if...”? (not required)

» What happens if we also differentiate Vj(s,,.()?
. This corresponds to arg miny, . Y oy (Vol8) =7 = yVo(s"))?

* No Iteration anymore; a clean optimization objective

* (most RL algorithms with bootstrapped target do not have a
fixed optimization objective; objective changes over time)

* Assume for simplicity that, each data point is generated by
(1) sampling s i.i.d. from some exploratory distribution, and
(2) generating r and s’ conditioned on (s, 7(s))

* Replacing empirical objective with the population version, the
objective becomes E; . [(Vy(s) — r — yVy(s))"]

What if...”? (not required)

o E,, [(Vy(s) —r—yVy(s))*] can be decomposed into two terms
o First term: E [(V,(s) — (T™V,)(5))*]
* Thisis good! measures how much Vg violates Bellman eqg
* A version of Bellman error ||V — TV
« Second term: y°E [Vargs 5[Vy(s)]]
* (assumes deterministic rewards)

* Thisis bad! An additional term that penalizes functions that
has large variance w.r.t. random state transitions

e Special case: 0 when environment is deterministic

* S0 it's actually a sensible algorithm for deterministic
environments, but doesn’t work when stochasticity is significant

Resolutions (not required)

* |t we have a simulator...
* For each s in data, draw another independent state transition
» Minimize objective E[(Vy(s) — r — yVy(s1))(Vy(s) — r — yVy(sp)]
* “Double sampling” and Baird’s residual algorithm (Bellman
residual minimization)

* Exercise: do you need to double sample the reward it reward is
stochastic”

* [The conditional variance term is eliminated by double sampling

* |t we can only draw 1 next-state (as with any natural data
generation process)...

 Estimate the conditional variance term and subtract from the
objective

* A minimax formulation (not covered in this course)
* For further readings, see 598 slides on FQI.

10

Convergence?

* TD with function approximation can diverge in general
* |s it because of...
* Randomness in SGD?
* Nope. Even the batch version doesn't converge.
e Sophisticated, non-linear func approx?

* Nope. Even linear doesn’t converge.
* That our function class does not capture V7

* Nope. Even it V" can be exactly represented in the function
class (“realizable”), it still does not converge.

2.1 Counter-example for least-square regression |[Tsitsiklis and van Roy, 1996]

An MDP with two states x1,xs, 1-d features for the two states: f,, = 1, f,, = 2. Linear Function approximation

with Vy(z) = 6f,.

0
/)

0 |/

/

N

¢ °
.I'l ,'172
1
0, = arg mein 5(6’ _ target1)2 + (260 — target2)2

1
= argmin (0 = 0" f2,)* + (20 = 10" fa,)?

1
= argmin (0 — 920" 1)% + (20 — 7207 1)?

(0 — 7205 71) 4+ 2(20 — 4208 ~1) = 0 = 50 = 60!

6

O = g’Y‘gk—l

This diverges if v > 5/6. credit: course notes

1 from Shipra Agrawal

A simple example (finite horizon, y=1)

N0SOSOS OSSOSO ®

Tter #1: Data: (, p end), cooy (, y end) ':[> 0.501
lter #2: Data: (@), 0, @) = (@), 0+0.501) = 0.501 0.501
Iter #10: 0.501 0.501 0501 0501 ... 0501 0501 0.501

« Dataset D ={(s, 7, s")} looks like:
(@®,0,2),(@,0,0),...,(0,1,end), ..., (10, 0, end)}

12

ow things go wrong (w/ restricted class)

MCACRC A O CaCR T

Realizable
Function < < < S s 0. 5|
class j_.012 0.756 0.628 0.504 0.502 0.501
ter #1: Data: (00, 1, end), ..., (0, 0, end) = 0.501
Iter #2: Data: (9), 0, 10) = (©, 0+0.501) = 0.502 0.501
1
Iter #10: 1.012 0.756 0.628 0.502 0.501

s Example given in Dann et al'18

14

Non-convergence

Why things go wrong”

Bellman update is a contraction, but here we have an additional
projection step: V. < I1zT "V}, projected Bellman update may
NOT be a contraction (even with linear function approximation)

* |tis still a contraction in some special cases; will see

In other words: In each iter, we solve a regression problem where the
target function is T"V, where V can be arbitrary function in &

The fact that V* € & does not imply that T"V is in &! We may do

quite poorly in the regression problem, and the iteration does not
mimic a Bellman update

Why tabular is fine? & is fully expressive so TV is always in &.

* Similarly for func approx, if we assume that & is closed under T™,
can prove some good properties of TD

All alg based on bootstrapped targets suffer from this issue

 Compare to the behavior of Monte-Carlo

