
Value Prediction  
with Function Approximation


Reading: Algs for RL (Szepesvári), Sec 3.2
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• Major limitation of tabular RL: does not scale to large state space

• most methods require that we run into the same state multiple 

times

• when the state space is large, you might not see the same 

state even twice!

• In other words: sample complexity scales with |S|

• need generalization


• For value prediction problem, generalization requires that we 
have some prior knowledge about the form the value function

• linear function approximation: design features 

(“featurizing states”), and approximate 
• only unknown: θ. d unknowns vs |S| unknowns!

ϕ(s) ∈ ℝd

Vπ(s) ≈ θ⊤ϕ(s)

Generalization for value prediction
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• An example featurization:

• let the height of the pile in i-th column be the i-th feature

• dimensionality of feature = #columns

• (probably doesn’t work; just an example)


• Feature engineering requires a lot of prior knowledge, domain 
insights, and trial and error, just as in supervised learning!

Example: linear function approximation for tetris
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• Draw a starting state si from the exploratory initial distribution, roll 
out a trajectory using π from si, and let Gi be the (random) 
discounted return


• Collect {(si , Gi)} pairs

• Least square regression: 

• Why this works?


• Assume {(si , Gi)} are i.i.d., let (s , G)  be variables equal in 
distribution


• The expected version of the objective: 
• If we do not restrict ourselves to linear functions, the function 

that minimizes this objective is !

• If true  happens to take linear form, the regression will find 

it in the limit (of infinite data)

• Finite sample regime: bias & variance trade-off

minθ
1
n ∑n

i=1 (θ⊤ϕ(si) − Gi)2

minθ 𝔼s,G[(θ⊤ϕ(s) − G)2]

s ↦ 𝔼[G |s] ( = Vπ(s))
Vπ(s)

Monte-Carlo Value Prediction
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• The same idea applies to non-linear value function approximation

• More generally & abstractly, think of function approximation as 

searching over a restricted function space, which is a set whose 
members are functions that map states to real values. 


• Function space of linear value function approximation: 
, where 


• typically only a small subset of all possible functions

• Using “all possible functions” = tabular!

• Equivalently, tabular MC value prediction can be recovered by 

choosing φ as the identity features 


•

• Plug in any function approximator of your choice

• SGD: uniformly sample i and 

ℱ = {Vθ : θ ∈ ℝd} Vθ(s) = θ⊤ϕ(s)

ϕ(s) = {𝕀[s = s′￼]}s′￼∈S

minVθ∈ℱ
1
n ∑n

i=1 (Vθ(si) − Gi)2

θ ← θ − α ⋅ (Vθ(si) − Gi) ⋅ ∇Vθ(si)

Monte-Carlo Value Prediction



TD(0) with function approximation
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• tabular: 

• When we update , the target is 
• Batch version of the algorithm: one Bellman update can be 

approximated (using all data) as 




• SGD + “no-wait”: 
• When using linear function approximation , we have 

• When using chain rule, we only take gradient on  and ignore 
; the latter is treated as a constant (it plays the role of Vk)

V(st) ← V(st) + α(rt + γV(st+1) − V(st))
V(st) rt + γV(st+1)

Vk+1 ← arg min
Vθ∈ℱ

1
T

T

∑
t=1

(Vθ(st) − r − γVk(st+1))2

θ ← θ − α ⋅ (Vθ(st) − r − γVθ(st+1)) ⋅ ∇Vθ(st)
Vθ(s) = ϕ(s)⊤θ

θ ← θ − α ⋅ (ϕ(st)⊤θ − r − γϕ(st+1)⊤θ) ⋅ ϕ(st)
Vθ(st)

Vθ(st+1)



What if…? (not required)
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• What happens if we also differentiate  ?

• This corresponds to 

• no iteration anymore; a clean optimization objective

• (most RL algorithms with bootstrapped target do not have a 

fixed optimization objective; objective changes over time)
• Assume for simplicity that, each data point is generated by  

(1) sampling s i.i.d. from some exploratory distribution, and 
(2) generating r and s’ conditioned on (s, π(s))


• Replacing empirical objective with the population version, the 
objective becomes 

Vθ(st+1)
arg minVθ∈ℱ ∑(s,r,s′￼) (Vθ(s) − r − γVθ(s′￼))2

𝔼s,r,s′￼[(Vθ(s) − r − γVθ(s′￼))2]



What if…? (not required)
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•  can be decomposed into two terms

• First term: 


• This is good! measures how much Vθ violates Bellman eq

• A version of Bellman error 


• Second term: 

• (assumes deterministic rewards)

• This is bad! An additional term that penalizes functions that 

has large variance w.r.t. random state transitions

• Special case: 0 when environment is deterministic


• So it’s actually a sensible algorithm for deterministic 
environments, but doesn’t work when stochasticity is significant

𝔼s,r,s′￼[(Vθ(s) − r − γVθ(s′￼))2]
𝔼s[(Vθ(s) − (𝒯πVθ)(s))2]

∥V − 𝒯πV∥
γ2𝔼s[Vars′￼|s,π(s)[Vθ(s′￼)]]



Resolutions (not required)
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• If we have a simulator…

• For each s in data, draw another independent state transition

• Minimize objective 

• “Double sampling” and Baird’s residual algorithm (Bellman 

residual minimization)

• Exercise: do you need to double sample the reward if reward is 

stochastic?

• The conditional variance term is eliminated by double sampling


• If we can only draw 1 next-state (as with any natural data 
generation process)…

• Estimate the conditional variance term and subtract from the 

objective

• A minimax formulation (not covered in this course)

• For further readings, see 598 slides on FQI.

𝔼[(Vθ(s) − r − γVθ(s′￼A))(Vθ(s) − r − γVθ(s′￼B)]



Convergence?
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• TD with function approximation can diverge in general

• Is it because of…


• Randomness in SGD?

• Nope. Even the batch version doesn’t converge.


• Sophisticated, non-linear func approx? 

• Nope. Even linear doesn’t converge.


• That our function class does not capture Vπ?

• Nope. Even if Vπ can be exactly represented in the function 

class (“realizable”), it still does not converge. 

•
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2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x1, x2, 1-d features for the two states: fx1 = 1, fx2 = 2. Linear Function approximation
with Ṽ✓(x) = ✓fx.

✓k := argmin
✓

1

2
(✓ � target1)

2 + (2✓ � target2)
2

= argmin
✓

1

2
(✓ � �✓k�1fx2)

2 + (2✓ � �✓k�1fx2)
2

= argmin
✓

1

2
(✓ � �2✓k�1)2 + (2✓ � �2✓k�1)2

(✓ � �2✓k�1) + 2(2✓ � �2✓k�1) = 0 ) 5✓ = 6�✓k�1

✓k =
6

5
�✓k�1

This diverges if � � 5/6.

2.2 Convergence of non-expansive approximations

Operator view of Fitted value-iteration. A more general way to interpret fitted value iteration is that you have an

operator MA that takes a value vector vi and projects it into the function space formed by functions of form Ṽ✓.

1. Start with an arbitrary initialization V 0, Ṽ✓0 := MA(V 0).

2. Repeat for k = 1, 2, 3, . . .:

• Ṽ✓i = MA � LṼ✓i�1 .

Now, to match the description earlier, consider operator MA defined as follows: Fit a Ṽ✓ to LṼ✓i�1 by comparing
its values on a subset S0 of states, using a regression technique. And, then return this Ṽ✓ as new function Ṽ✓i in
the output space of MA. Thus, MA is e↵ectively an approximation operator.

Equivalently,

1. Start with an arbitrary initialization v0.

2. Repeat for k = 1, 2, 3, . . .:

• vi = (L �MA)vi�1.

(In an e�cient implementation, ui�1 = MAvi�1 probably has a more compact representation, so the first view may
be better for implementation)

The above view allows us to view fitted value iteration as just value iteration with a di↵erent operator: vi =
Lvi�1 is replaced by Ṽ i = (MA � L)Ṽ i�1. Therefore, as long as the new operator (MA � L) is also �-contraction,
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credit: course notes 

from Shipra Agrawal



• Dataset D = {(s, r, s’)} looks like:  
{(①, 0, ②), (②, 0,③), …, (⑩, 1, end), …, (⑩, 0, end)}
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A simple example (finite horizon, γ=1)

…
reward: Ber(0.5)

start 1 2 3 4 10

Iter #1: 0.501

Iter #2: 

Data: (⑩, 1, end), …, (⑩, 0, end)

Data: (⑨, 0, ⑩)

9

0.5010.501(⑨, 0+0.501)

…

Iter #10: 0.501 0.501 0.501 0.501 0.501 0.501

8

0.501…
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How things go wrong (w/ restricted class)

…
reward: Ber(0.5)

start 1 2 3 4 10

Iter #1: 0.501

Iter #2: 

Data: (⑩, 1, end), …, (⑩, 0, end)

Data: (⑨, 0, ⑩)

9

0.502(⑨, 0+0.501)

…

Iter #10: 

8

Function
class

0.5
0.501

0.5
0.502

0.5
0.504

×××…0.5
1.012

×

0.501

0.502 0.501…1.012
!!!

0.756

0.5
0.756

0.5
0.628

× ×

0.628

Realizable

Example given in Dann et al’18



Non-convergence
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• Why things go wrong? 

• Bellman update is a contraction, but here we have an additional 

projection step: , projected Bellman update may 
NOT be a contraction (even with linear function approximation)

• it is still a contraction in some special cases; will see


• In other words: in each iter, we solve a regression problem where the 
target function is TπV, where V can be arbitrary function in 


• The fact that  does not imply that TπV is in ! We may do 
quite poorly in the regression problem, and the iteration does not 
mimic a Bellman update


• Why tabular is fine?  is fully expressive so TπV is always in .

• Similarly for func approx, if we assume that  is closed under Tπ, 

can prove some good properties of TD

• All alg based on bootstrapped targets suffer from this issue


• Compare to the behavior of Monte-Carlo

Vk+1 ← Πℱ𝒯πVk

ℱ

Vπ ∈ ℱ ℱ

ℱ ℱ

ℱ


