Tabular RL for Value Prediction Reading: Algs for RL (Szepesvári), Sec 3.1

The Value Prediction Problem

- Given π , want to learn V^{π} or Q^{π}
- Why useful? Recall that if we know how to compute Q^{π} , we can run policy iteration
- On-policy learning: data is generated by π
- Off-policy learning: data is generated by some other policy
- Will mostly focus on on-policy learning for now; all actions in data are taken according to π (often omitted)
- When action is always chosen by a fixed policy, the MDP reduces to a Markov chain plus a reward function over states, also known as Markov Reward Processes (MRP)

Monte-Carlo Value Prediction

- If we can roll out trajectories from any starting state that we want, here is a simple procedure
- For each s, roll out n trajectories using policy π
 - For episodic tasks, roll out until termination
 - For continuing tasks, roll out to a length (typically H = O(1/(1 - γ))) such that omitting the future rewards has minimal impact ("small truncation error")
 - Let $\hat{V}^{\pi}(s)$ (will just write V(s)) be the average discounted return
- also works if we can draw starting state from an exploratory initial distribution (i.e., one that assigns non-zero probability to every state)
 - Keep generating trajectories until we have enough data points for each starting state

Implementing MC in an online manner

- The previous procedure assumes that we collect all the data, store them, and then process them (batch-mode learning)
- Can we process each data point as they come, without ever needing to store them? (online, one-pass algorithm)
- For *i* = 1, 2, ...
 - Draw a starting state s_i from the exploratory initial distribution, roll out a trajectory using π from s_i , and let G_i be the (random) discounted return
 - Let $n(s_i)$ be the number of times s_i has appeared as an initial state. If $n(s_i) = 1$ (first time seeing this state), let $V(s_i) \leftarrow G_i$

• Otherwise,
$$V(s_i) \leftarrow \frac{n(s_i) - 1}{n(s_i)} V(s_i) + \frac{1}{n(s_i)} G_i$$

• Verify: at any point, *V*(*s*) is always the MC estimation using trajectories starting from *s* available so far

Implementing MC in an online manner

- More generally, $V(s_i) \leftarrow (1 \alpha)V(s_i) + \alpha G_i$
 - α is known as the step size or the learning rate
 - in theory, convergence require sum of α goes to infinity while sum of α^2 stays finite; in practice, constant small α is often used
 - G_i is often called "the target"
 - The expected value of the target is what we want to update our estimate to, but since it's noisy, we only move slightly to it
- Alternative expression: $V(s_i) \leftarrow V(s_i) + \alpha(G_i V(s_i))$
 - Moving the estimate in the direction of error (= target current)
- Can be interpreted as stochastic gradient descent
 - If we have i.i.d. real random variables $v_1, v_2, ..., v_n$, the average is the solution of the least-square optimization problem: $\min_{v} \frac{1}{2n} \sum_{i=1}^{n} (v - v_i)^2$
 - Stochastic gradient: $v v_i$ (for uniformly random i)

Every-visit Monte-Carlo

- Suppose we have a continuing task. What if we cannot set the starting state arbitrarily?
- Let's say we only have one single long trajectory *s*₁, *a*₁, *r*₁, *s*₂, *a*₂, *r*₂, *s*₃, *a*₃, *r*₃, *s*₄, ...
 - (By "long trajectory", we mean trajectory length >> effective horizon $H = O(1/(1 \gamma))$)
- On-policy: $a_t \sim \pi(s_t)$, where π is the policy we want to evaluate
- Algorithm: for each s, find all t such that st = s, calculate the discounted sum of rewards between time step t and t+H, and take average over them as V(si)
- Convergence requires additional assumption: the Markov chain induced by π is ergodic—implying that all states will be hit infinitely often if the trajectory length grows to infinity

Every-visit Monte-Carlo

- You can use this idea to improve the algorithm when we can choose the starting state & the MDP is episodic
- i.e., obtain a random return for each state visited on the trajectory
- What if a state occurs multiple times on a trajectory?
 - Approach 1: only the 1st occurrence is used ("first-visit MC")
 - Approach 2: all of them are used ("every-visit MC")

Alternative Approach: TD(0)

- Again, suppose we have a single long trajectory s_1 , a_1 , r_1 , s_2 , a_2 , r_2 , s_3 , a_3 , r_3 , s_4 , ... in a continuing task
- TD(0): for t =1, 2, ..., $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) V(s_t))$
 - TD = temporal difference
 - $r_t + \gamma V(s_{t+1}) V(s_t)$: "TD-error"
 - The same structure as the MC update rule, except that we are using a different target here: $r_t + \gamma V(s_{t+1})$
 - Often called "bootstrapped" target: the target value depends on our current estimated value function V
 - Conditioned on s_t , what is the expected value of the target (taking expectation over the randomness of r_t, s_{t+1})?
 - It's $(T^{\pi}V)(s_t)$

Understanding TD(0)

- $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) V(s_t))$
- Imagine a slightly different procedure
 - Initialize V and V' arbitrarily
 - Keep running $V'(s_t) \leftarrow V'(s_t) + \alpha(r_t + \gamma V(s_{t+1}) V'(s_t))$
 - Note that only V' is being updated; V doesn't change
 - What's the relationship between V and V' after long enough?
 - $V' = T^{\pi} V!$ We've completed 1 iter of VI for solving V^{π}
 - Copy V' to V, and repeat this procedure again and again
- TD(0): almost the same, except that we don't wait. Copy V' to V after every update!
- (Algorithms that "wait" actually have a come back in deep RL!)
- Optional reading: synchronous vs asynchronous updates in dynamic programming (for planning)

TD(0) vs MC

- TD(0) target: $r_t + \gamma V(s_{t+1})$
- MC target: $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
- MC target is unbiased: expectation of target is the $V^{\pi}(s)$
- TD(0) target is biased (w.r.t. $V^{\pi}(s)$): the expected target is $(T^{\pi}V)(s)$
 - Although the expected target is not V^{π} , it's closer to V^{π} than where we are now (recall that T^{π} is a contraction)
- On the other hand, TD(0) has lower variance than MC
- Bias vs variance trade-off
- Also a practical concern: when interval of a time step is too small (e.g., in robotics), $V(s_t)$ and $V(s_{t+1})$ can be very close, and their difference can be buried by errors (error compounding over time)

$TD(\lambda)$: Unifying TD(0) and MC

- 1-step bootstrap (=TD(0)): $r_t + \gamma V(s_{t+1})$
- 2-step bootstrap: $r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})$
- 3-step bootstrap: $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3})$
- ...
- ∞ -step bootstrap (=MC=TD(1)): $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
- n-step bootstrap: as n increases, more variance, less bias
- Exercise: what's the expected target in n-step bootstrap? $(T^{\pi})^{n}V$
- TD(λ): weighted combination of n-step bootstrapped target, with weighting scheme $(1 \lambda)\lambda^{n-1}$
 - $\lambda = 0$: only n=1 gets full weight. TD(0)
 - limit $\lambda \rightarrow 1$: (almost) MC, see pg 24 of Szepesvári
 - "forward view" of TD(λ)

$TD(\lambda)$: Unifying TD(0) and MC

- Why the choice of $(1 \lambda)\lambda^{n-1}$?
 - Enables efficient online implementation
 - "Backward view" of TD(λ)

Algorithm 3 The function that implements the tabular $TD(\lambda)$ algorithm with replacing traces. This function must be called after each transition.

function TDLAMBDA(X, R, Y, V, z)

Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces

1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$

- 2: for all $x \in \mathcal{X}$ do
- 3: $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
- 4: **if** X = x **then**
- 5: $z[x] \leftarrow 1 + \gamma \cdot \lambda \cdot z[x]$
- 6: end if
- 7: $V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]$
- 8: end for

12

9: return (V, z)

- Their X is our st
- Their Y is our st+1
- δ is the standard TD error (1-step)
- z is called the *eligibility trace*
- z[x] Every step we update at all states (TD(0) only updates V at the current state s_t)
- This code is the improved version with replacing traces; the
- original version has the red term

Equivalence between backward and forward view

- Will show in a simplified case
- An infinite trajectory, initial state s₁ only appears once, all updates are postponed til the end and "patched" together
- calculate the update for $V(s_1)$ according to the two views
- Forward view: (learning rate α omitted in all updates)

•
$$(1 - \lambda) \cdot (r_1 + \gamma V(s_2) - V(s_1))$$

- $(1 \lambda)\lambda \cdot (r_1 + \gamma r_2 + \gamma^2 V(s_3) V(s_1))$
- $(1 \lambda)\lambda^2 \cdot (r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V(s_4) V(s_1))$, and so on
- Backward view:
 - $1 \cdot (r_1 + \gamma V(s_2) V(s_1))$
 - $\lambda \gamma \cdot (r_2 + \gamma V(s_3) V(s_2))$
 - $\lambda^2 \gamma^2 \cdot (r_3 + \gamma V(s_4) V(s_3))$, and so on

1: $\delta \leftarrow R + \gamma \cdot V[Y] - V[X]$ 2: for all $x \in \mathcal{X}$ do 3: $z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$ 4: if X = x then 5: $z[x] \leftarrow 1$ 6: end if 7: $V[x] \leftarrow V[x] + \alpha \cdot \delta \cdot z[x]$