
Tabular RL for Value Prediction
Reading: Algs for RL (Szepesvári), Sec 3.1

2

• Given π, want to learn Vπ or Qπ
• Why useful? Recall that if we know how to compute Qπ, we can

run policy iteration
• On-policy learning: data is generated by π
• Off-policy learning: data is generated by some other policy
• Will mostly focus on on-policy learning for now; all actions in data

are taken according to π (often omitted)
• When action is always chosen by a fixed policy, the MDP reduces

to a Markov chain plus a reward function over states, also known
as Markov Reward Processes (MRP)

The Value Prediction Problem

3

• If we can roll out trajectories from any starting state that we want,
here is a simple procedure

• For each s, roll out n trajectories using policy π
• For episodic tasks, roll out until termination
• For continuing tasks, roll out to a length (typically

) such that omitting the future rewards has
minimal impact (“small truncation error”)

• Let (will just write V(s)) be the average discounted return
• also works if we can draw starting state from an exploratory initial

distribution (i.e., one that assigns non-zero probability to every
state)
• Keep generating trajectories until we have enough data points

for each starting state

H = O(1/(1 − γ))

̂Vπ(s)

Monte-Carlo Value Prediction

4

• The previous procedure assumes that we collect all the data,
store them, and then process them (batch-mode learning)

• Can we process each data point as they come, without ever
needing to store them? (online, one-pass algorithm)

• For i = 1, 2, …
• Draw a starting state si from the exploratory initial distribution,

roll out a trajectory using π from si, and let Gi be the (random)
discounted return

• Let n(si) be the number of times si has appeared as an initial
state. If n(si) = 1 (first time seeing this state), let

• Otherwise,

• Verify: at any point, is always the MC estimation using
trajectories starting from s available so far

V(si) ← Gi

V(si) ←
n(si) − 1

n(si)
V(si) +

1
n(si)

Gi

V(s)

Implementing MC in an online manner

5

• More generally,
• α is known as the step size or the learning rate
• in theory, convergence require sum of α goes to infinity while

sum of α2 stays finite; in practice, constant small α is often used
• Gi is often called “the target”
• The expected value of the target is what we want to update our

estimate to, but since it’s noisy, we only move slightly to it
• Alternative expression:

• Moving the estimate in the direction of error (= target - current)
• Can be interpreted as stochastic gradient descent

• If we have i.i.d. real random variables v1, v2, …, vn, the average
is the solution of the least-square optimization problem:

• Stochastic gradient: v - vi (for uniformly random i)

V(si) ← (1 − α)V(si) + αGi

V(si) ← V(si) + α(Gi − V(si))

minv
1
2n ∑n

i=1 (v − vi)2

Implementing MC in an online manner

6

• Suppose we have a continuing task. What if we cannot set the
starting state arbitrarily?

• Let’s say we only have one single long trajectory
s1, a1, r1, s2, a2, r2, s3, a3, r3, s4, …
• (By “long trajectory”, we mean trajectory length >> effective

horizon)
• On-policy: at ~ π(st), where π is the policy we want to evaluate
• Algorithm: for each s, find all t such that st = s, calculate the

discounted sum of rewards between time step t and t+H, and
take average over them as

• Convergence requires additional assumption: the Markov chain
induced by π is ergodic—implying that all states will be hit
infinitely often if the trajectory length grows to infinity

H = O(1/(1 − γ))

V(si)

Every-visit Monte-Carlo

7

• You can use this idea to improve the algorithm when we can
choose the starting state & the MDP is episodic

• i.e., obtain a random return for each state visited on the trajectory
• What if a state occurs multiple times on a trajectory?

• Approach 1: only the 1st occurrence is used (“first-visit MC”)
• Approach 2: all of them are used (“every-visit MC”)

Every-visit Monte-Carlo

Alternative Approach: TD(0)

8

• Again, suppose we have a single long trajectory s1, a1, r1, s2, a2, r2,
s3, a3, r3, s4, … in a continuing task

• TD(0): for t =1, 2, …,
• TD = temporal difference
• : “TD-error”
• The same structure as the MC update rule, except that we are

using a different target here:
• Often called “bootstrapped” target: the target value depends

on our current estimated value function V
• Conditioned on st, what is the expected value of the target

(taking expectation over the randomness of rt, st+1)?
• It’s

V(st) ← V(st) + α(rt + γV(st+1) − V(st))

rt + γV(st+1) − V(st)

rt + γV(st+1)

(TπV)(st)

Understanding TD(0)

9

•
• Imagine a slightly different procedure

• Initialize V and V’ arbitrarily
• Keep running
• Note that only V’ is being updated; V doesn’t change
• What’s the relationship between V and V’ after long enough?
• V’ = Tπ V! We’ve completed 1 iter of VI for solving Vπ
• Copy V’ to V, and repeat this procedure again and again

• TD(0): almost the same, except that we don’t wait. Copy V’ to V
after every update!

• (Algorithms that “wait” actually have a come back in deep RL!)
• Optional reading: synchronous vs asynchronous updates in

dynamic programming (for planning)

V(st) ← V(st) + α(rt + γV(st+1) − V(st))

V′ (st) ← V′ (st) + α(rt + γV(st+1)−V′ (st))

TD(0) vs MC

10

• TD(0) target:
• MC target:
• MC target is unbiased: expectation of target is the Vπ(s)
• TD(0) target is biased (w.r.t. Vπ(s)): the expected target is

(TπV)(s)
• Although the expected target is not Vπ, it’s closer to Vπ than

where we are now (recall that Tπ is a contraction)
• On the other hand, TD(0) has lower variance than MC
• Bias vs variance trade-off
• Also a practical concern: when interval of a time step is too small

(e.g., in robotics), V(st) and V(st+1) can be very close, and their
difference can be buried by errors (error compounding over time)

rt + γV(st+1)

rt + γrt+1 + γ2rt+2 + . . .

TD(λ): Unifying TD(0) and MC

11

• 1-step bootstrap (=TD(0)):
• 2-step bootstrap:
• 3-step bootstrap:
• …

rt + γV(st+1)

rt + γrt+1 + γ2V(st+2)

rt + γrt+1 + γ2rt+2 + γ3V(st+3)

• ∞-step bootstrap (=MC=TD(1)): rt + γrt+1 + γ2rt+2 + . . .

• n-step bootstrap: as n increases, more variance, less bias
• Exercise: what’s the expected target in n-step bootstrap?
• TD(λ): weighted combination of n-step bootstrapped target, with

weighting scheme
• λ = 0: only n=1 gets full weight. TD(0)
• limit λ -> 1: (almost) MC, see pg 24 of Szepesvári
• “forward view” of TD(λ)

(Tπ)nV

(1 − λ)λn−1

TD(λ): Unifying TD(0) and MC

12

• Why the choice of ?
• Enables efficient online implementation
• “Backward view” of TD(λ)

(1 − λ)λn−1

• Their X is our st
• Their Y is our st+1
• δ is the standard TD error (1-step)
• z is called the eligibility trace
• Every step we update at all states (TD(0)

only updates V at the current state st)

+γ ⋅ λ ⋅ z[x]

• This code is the improved version with replacing traces; the
original version has the red term

Equivalence between backward and forward view

13

• Will show in a simplified case
• An infinite trajectory, initial state s1 only appears once, all updates

are postponed til the end and “patched” together
• calculate the update for V(s1) according to the two views
• Forward view: (learning rate α omitted in all updates)

•

•

• , and so on
• Backward view:

•
•
• , and so on

(1 − λ) ⋅ (r1 + γV(s2) − V(s1))
(1 − λ)λ ⋅ (r1 + γr2 + γ2V(s3) − V(s1))

(1 − λ)λ2 ⋅ (r1 + γr2 + γ2r3 + γ3V(s4) − V(s1))

1 ⋅ (r1 + γV(s2) − V(s1))
λγ ⋅ (r2 + γV(s3) − V(s2))

λ2γ2 ⋅ (r3 + γV(s4) − V(s3))

