Tabular RL for Value Prediction
Reading: Algs for RL (Szepesvari), Sec 3.1



The Value Prediction Problem

Given 7t, want to learn V™ or Q™

Why useful? Recall that if we know how to compute Q™, we can
run policy iteration

On-policy learning: data is generated by m

Off-policy learning: data is generated by some other policy

Will mostly focus on on-policy learning for now; all actions in data
are taken according to 7t (often omitted)

When action is always chosen by a fixed policy, the MDP reduces
to a Markov chain plus a reward function over states, also known
as Markov Reward Processes (MRP)



Monte-Carlo Value Prediction

* |t we can roll out trajectories from any starting state that we want,
nere is a simple procedure

* For each s, roll out n trajectories using policy 7
* For episodic tasks, roll out until termination

* For continuing tasks, roll out to a length (typically
H = 0(1/(1 —y))) such that omitting the future rewards has
minimal impact (“small truncation error”)

e Let V7(s) (will just write V(s)) be the average discounted return

* also works it we can draw starting state from an exploratory initial
distribution (i.e., one that assigns non-zero probability to every
state)

* Keep generating trajectories until we have enough data points
for each starting state



Implementing MC in an online manner

* The previous procedure assumes that we collect all the data,
store them, and then process them (batch-mode learning)

 Can we process each data point as they come, without ever
needing to store them? (online, one-pass algorithm)

e Fori=1,2, ...

* Draw a starting state s; from the exploratory initial distribution,

roll out a trajectory using m from s;, and let G; be the (random)
discounted return

* Let n(s;) be the number of times s;ihas appeared as an initial
state. If n(s;) = 1 (first time seeing this state), let V(s,) « G,
. Otherwise, V(s,) < (s — | V(s;) + :
n(s;) n(s;)
e Verify: at any point, v(s) is always the MC estimation using

trajectories starting from s available so far

G,



Implementing MC in an online manner

« More generally, V(s,) < (1 — a)V(s)) + aG;
* aIs known as the step size or the learning rate

* In theory, convergence require sum of a goes to infinity while
sum of a2 stays finite; in practice, constant small a is often used

* G; Is often called “the target”

* The expected value of the target is what we want to update our
estimate to, but since it's noisy, we only move slightly to it

o Alternative expression: V(s;) < V(s;,) + a(G; — V(s;))
* Moving the estimate in the direction of error (= target - current)
* Can be interpreted as stochastic gradient descent

* |t we have i.1.d. real random variables vy, vy, ..., vs, the average
IS the solution of the least-square optimization problem:

. 1 n 9)
min, —p,._, (v—v)

e Stochastic gradient: v - v; (for uniformly random 1)



Every-visit Monte-Carlo

Suppose we have a continuing task. What if we cannot set the
starting state arbitrarily”

Let's say we only have one single long trajectory

s1,4d1,71, S2, 42,72, 53,043,73,54, ...

* (By “long trajectory”, we mean trajectory length >> effective
horizon H = 0(1/(1 —y)))

On-policy: ar ~ m(st), where 7t is the policy we want to evaluate

Algorithm: for each s, find all t such that s; = s, calculate the
discounted sum of rewards between time step t and t+H, and
take average over them as V(s;)

Convergence requires additional assumption: the Markov chain
induced by 7t Is ergodic—Iimplying that all states will be hit
infinitely often if the trajectory length grows to infinity



Every-visit Monte-Carlo

* You can use this idea to improve the algorithm when we can
choose the starting state & the MDP is episodic

* |.e., obtain a random return for each state visited on the trajectory
 What if a state occurs multiple times on a trajectory?

 Approach 1: only the 1st occurrence is used (“first-visit MC”)

* Approach 2: all of them are used (“every-visit MC")



Alternative Approach: TD(0)

* Again, suppose we have a single long trajectory si, a1, r1, S2, a2, 12,
S3, 3,13, 54, ... IN @ continuing task

« TD(0): fort=1,2, ..., V(s) < V(s,) + a(r, + yV(s,, ) — V(s))

TD = temporal difference
r,+yV(s, ) — V(sy): “TD-error”

The same structure as the MC update rule, except that we are
using a different target here: r, + yV(s,, )

Often called “bootstrapped” target: the target value depends
on our current estimated value function V

Conditioned on s;, what is the expected value of the target
(taking expectation over the randomness of ry, s¢+1)?

. It's (T"V)(s,)



Understanding TD(0)

e V(s,) <« V(s) +a(r,+yV(s, ) — V(s))
* Imagine a slightly different procedure
* |nitialize V and V"’ arbitrarily
» Keep running V'(s,) < V'(s,) + a(r, + yV(s,.1)—V'(s,)
* Note that only V’is being updated; VV doesn't change
* What'’s the relationship between V and V'’ after long enough??

* V'=T" VI We've completed 1 iter of VI for solving V”"
* Copy V’to V, and repeat this procedure again and again

* TD(0): almost the same, except that we don’t wait. Copy V'to V
after every update!

* (Algorithms that “wait” actually have a come back in deep RL!)

* Optional reading: synchronous vs asynchronous updates in
dynamic programming (for planning)
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TD(0) vs MC

TD(0) target: r, + yV(s,, )
MC target: r,+yr, + 7, +...

MC target is unbiased: expectation of target is the V™(s)

TD(0) target is biased (w.r.t. V(s)): the expected target is
(TTV)(s)

° A
W
Ont

though the expected target is not V", it's closer to V™ than
nere we are now (recall that T is a contraction)

ne other hand, TD(0) has lower variance than MC

Bias vs variance trade-off

Also a practical concern: when interval of a time step is too small

(e.q.

diffe

. in robotics), V(s;) and V(sw1) can be very close, and their
rence can be buried by errors (error compounding over time)
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TD(A): Unifying TD(0) and MC

1-step bootstrap (=TD(0)): r, + yV(s,, )
2-step bootstrap: r, + yr,,; + 7*V(s,,»)

3-step bootstrap: r, +yr,  + r’ru, + 7> Vis,,3)

co-Step bootstrap (=MC=TD(1)): r,+yr,  + 7’1 +...

n-step bootstrap: as n increases, more variance, less bias
Exercise: what's the expected target in n-step bootstrap? (T7)"V

TD(M): weighted combination of n-step bootstrapped target, with
weighting scheme (1 — )4

* A =0:only n=1 gets full weight. TD(0)
e limit A -> 1: (almost) MC, see pg 24 of Szepesvari
e “forward view” of TD(A)



TD(A): Unifying TD(0) and MC

* Why the choice of (1 — 1)A"1?
* Enables efficient online implementation
e “Backward view” of TD(A)

Algorithm 3 The function that implements the tabular TD()) algorithm with replacing

traces. This function must be called after each transition.
function TDLAMBDA(X, R,Y,V, 2)

Input: X is the last state, Y is the next state, R is the immediate reward associated with
this transition, V is the array storing the current value function estimate, z is the array

storing the eligibility traces Their X is our s

1: <« R+~v - VY| -VI[X]

2: for all z € X do ° Their Y iS OUl St+1

3: zlx) v - A - z[x] |

4 if X =z then e O isthe standard TD error (1-step)

Z: endz [f;] crral L 2 s called the eligibility trace

’ ende[(“)’l‘_ Viz]+a -0 -2l o Eyery step we update at all states (TD(0)
. return (V. 2) only updates V at the current state st)

* This code is the improved version with replacing traces; the
12 original version has the red term
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Equivalence between backward and forward view

Will show in a simplitied case

An infinite trajectory, initial state s; only appears once, all updates
are postponed til the end and “patched” together

calculate the update for V(s1) according to the two views

Forward view: (learning rate a omitted in all updates)

« (I1=4)-(r +yV(sy — V(s))

o (1 =NA-(ry+yr,+7°V(sy) — V(s)))

o (1 =A% (ry+yry+7°r; +y°V(sy) — V(sy)), and so on

Backward view: L 6 Rty - VY] — VIX]

e 1. (rl + }/V(Sz) — V(Sl)) ; forza[zl[;l] :f_EfYX (;O Z[ZE]

o Ay (ry+yVis3) — V(sy)) 4: if X =z then
: 1
o 2277 (ry + yV(sy) — V(s3)), and so on LA
7. V|« Viz]+a-§- zz]



