
Tabular RL for Value Prediction 
Reading: Algs for RL (Szepesvári), Sec 3.1
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• Given π, want to learn Vπ or Qπ 
• Why useful? Recall that if we know how to compute Qπ, we can 

run policy iteration 
• On-policy learning: data is generated by π 
• Off-policy learning: data is generated by some other policy 
• Will mostly focus on on-policy learning for now; all actions in data 

are taken according to π (often omitted) 
• When action is always chosen by a fixed policy, the MDP reduces 

to a Markov chain plus a reward function over states, also known 
as Markov Reward Processes (MRP)

The Value Prediction Problem
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• If we can roll out trajectories from any starting state that we want, 
here is a simple procedure 

• For each s, roll out n trajectories using policy π 
• For episodic tasks, roll out until termination 
• For continuing tasks, roll out to a length (typically 

) such that omitting the future rewards has 
minimal impact (“small truncation error”) 

• Let  (will just write V(s)) be the average discounted return 
• also works if we can draw starting state from an exploratory initial 

distribution (i.e., one that assigns non-zero probability to every 
state) 
• Keep generating trajectories until we have enough data points 

for each starting state

H = O(1/(1 − γ))

̂Vπ(s)

Monte-Carlo Value Prediction
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• The previous procedure assumes that we collect all the data, 
store them, and then process them (batch-mode learning) 

• Can we process each data point as they come, without ever 
needing to store them? (online, one-pass algorithm) 

• For i = 1, 2, … 
• Draw a starting state si from the exploratory initial distribution, 

roll out a trajectory using π from si, and let Gi be the (random) 
discounted return 

• Let n(si) be the number of times si has appeared as an initial 
state. If n(si) = 1 (first time seeing this state), let 

• Otherwise, 

• Verify: at any point,  is always the MC estimation using 
trajectories starting from s available so far

V(si) ← Gi

V(si) ←
n(si) − 1

n(si)
V(si) +

1
n(si)

Gi

V(s)

Implementing MC in an online manner
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• More generally, 
• α is known as the step size or the learning rate  
• in theory, convergence require sum of α goes to infinity while 

sum of α2 stays finite; in practice, constant small α  is often used
• Gi  is often called “the target” 
• The expected value of the target is what we want to update our 

estimate to, but since it’s noisy, we only move slightly to it 
• Alternative expression:  

• Moving the estimate in the direction of error (= target - current) 
• Can be interpreted as stochastic gradient descent 

• If we have i.i.d. real random variables v1, v2, …, vn, the average 
is the solution of the least-square optimization problem: 

• Stochastic gradient: v - vi (for uniformly random i)

V(si) ← (1 − α)V(si) + αGi

V(si) ← V(si) + α(Gi − V(si))

minv
1
2n ∑n

i=1 (v − vi)2

Implementing MC in an online manner



6

• Suppose we have a continuing task. What if we cannot set the 
starting state arbitrarily?  

• Let’s say we only have one single long trajectory 
s1, a1, r1, s2, a2, r2, s3, a3, r3, s4, … 
• (By “long trajectory”, we mean trajectory length >> effective 

horizon ) 
• On-policy: at ~ π(st), where π is the policy we want to evaluate 
• Algorithm: for each s, find all t such that st = s, calculate the 

discounted sum of rewards between time step t and t+H, and 
take average over them as  

• Convergence requires additional assumption: the Markov chain 
induced by π is ergodic—implying that all states will be hit 
infinitely often if the trajectory length grows to infinity

H = O(1/(1 − γ))

V(si)

Every-visit Monte-Carlo
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• You can use this idea to improve the algorithm when we can 
choose the starting state & the MDP is episodic  

• i.e., obtain a random return for each state visited on the trajectory 
• What if a state occurs multiple times on a trajectory? 

• Approach 1: only the 1st occurrence is used (“first-visit MC”) 
• Approach 2: all of them are used (“every-visit MC”)

Every-visit Monte-Carlo



Alternative Approach: TD(0)
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• Again, suppose we have a single long trajectory s1, a1, r1, s2, a2, r2, 
s3, a3, r3, s4, … in a continuing task 

• TD(0): for t =1, 2, …,  
• TD = temporal difference 
• : “TD-error” 
• The same structure as the MC update rule, except that we are 

using a different target here:  
• Often called “bootstrapped” target: the target value depends 

on our current estimated value function V 
• Conditioned on st, what is the expected value of the target 

(taking expectation over the randomness of rt, st+1)?  
• It’s 

V(st) ← V(st) + α(rt + γV(st+1) − V(st))

rt + γV(st+1) − V(st)

rt + γV(st+1)

(TπV )(st)



Understanding TD(0)
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•  
• Imagine a slightly different procedure 

• Initialize V and V’ arbitrarily 
• Keep running  
• Note that only V’ is being updated; V doesn’t change 
• What’s the relationship between V and V’ after long enough? 
• V’ = Tπ V! We’ve completed 1 iter of VI for solving Vπ 
• Copy V’ to V, and repeat this procedure again and again 

• TD(0): almost the same, except that we don’t wait. Copy V’ to V 
after every update! 

• (Algorithms that “wait” actually have a come back in deep RL!) 
• Optional reading: synchronous vs asynchronous updates in 

dynamic programming (for planning)

V(st) ← V(st) + α(rt + γV(st+1) − V(st))

V′ (st) ← V′ (st) + α(rt + γV(st+1)−V′ (st))



TD(0) vs MC
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• TD(0) target:  
• MC target: 
• MC target is unbiased: expectation of target is the Vπ(s)  
• TD(0) target is biased (w.r.t. Vπ(s)): the expected target is  

(TπV)(s)
• Although the expected target is not Vπ, it’s closer to Vπ than 

where we are now (recall that Tπ is a contraction) 
• On the other hand, TD(0) has lower variance than MC 
• Bias vs variance trade-off 
• Also a practical concern: when interval of a time step is too small 

(e.g., in robotics), V(st) and V(st+1) can be very close, and their 
difference can be buried by errors (error compounding over time)

rt + γV(st+1)

rt + γrt+1 + γ2rt+2 + . . .



TD(λ): Unifying TD(0) and MC
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• 1-step bootstrap (=TD(0)): 
• 2-step bootstrap: 
• 3-step bootstrap: 
• …

rt + γV(st+1)

rt + γrt+1 + γ2V(st+2)

rt + γrt+1 + γ2rt+2 + γ3V(st+3)

• ∞-step bootstrap (=MC=TD(1)): rt + γrt+1 + γ2rt+2 + . . .

• n-step bootstrap: as n increases, more variance, less bias 
• Exercise: what’s the expected target in n-step bootstrap?  
• TD(λ): weighted combination of n-step bootstrapped target, with 

weighting scheme 
• λ = 0: only n=1 gets full weight. TD(0) 
• limit λ -> 1: (almost) MC, see pg 24 of Szepesvári 
• “forward view” of TD(λ)

(Tπ)nV

(1 − λ)λn−1



TD(λ): Unifying TD(0) and MC
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• Why the choice of ? 
• Enables efficient online implementation 
• “Backward view” of TD(λ)

(1 − λ)λn−1

• Their X is our st 
• Their Y is our st+1 
• δ is the standard TD error (1-step) 
• z is called the eligibility trace 
• Every step we update at all states (TD(0) 

only updates V at the current state st)

+γ ⋅ λ ⋅ z[x]

• This code is the improved version with replacing traces; the 
original version has the red term



Equivalence between backward and forward view
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• Will show in a simplified case 
• An infinite trajectory, initial state s1 only appears once, all updates 

are postponed til the end and “patched” together 
• calculate the update for V(s1) according to the two views 
• Forward view: (learning rate α omitted in all updates) 

•

•

• , and so on
• Backward view: 

•  
•  
• , and so on

(1 − λ) ⋅ (r1 + γV(s2) − V(s1))
(1 − λ)λ ⋅ (r1 + γr2 + γ2V(s3) − V(s1))

(1 − λ)λ2 ⋅ (r1 + γr2 + γ2r3 + γ3V(s4) − V(s1))

1 ⋅ (r1 + γV(s2) − V(s1))
λγ ⋅ (r2 + γV(s3) − V(s2))

λ2γ2 ⋅ (r3 + γV(s4) − V(s3))


