
The Learning Setting

2

• So far we have considered planning

• i.e., given MDP model, how to compute optimal policy

• More broadly, whenever the MDP model (i.e., reward &

transition functions) is known, it is the planning setting

• Learning: MDP model is unknown, but we are given/can collect

data from the MDP (often in the form of (s, a, r, s’))

• Defining a concrete learning problem involves many factors…

• Is data passively given (batch/offline/off-policy), or we can
collect ourselves and decide how to act (online)?

• Is data a bag of 4-tuples, or are they in the form of trajectories?

• Are we interested in policy evaluation or optimization?

• …

RL: Planning or Learning?

3

• Learning can be useful even if the final goal is planning

• esp. when |S| is large and/or only blackbox simulator

• e.g., AlphaGo, video game playing, simulated robotics

• “Sampling-based planning”—what RL has been mostly about

historically (despite the word “learning” in its name!)

• Can run simulator to generate data indefinitely

• Major concern: computational complexity

• Learning as a problem

• e.g., adaptive medical treatment, dialog systems

• Data is limited. Sample complexity (data efficiency) is as

important as computational complexity

• Additional concerns about e.g., safety

RL: Planning or Learning?

Simplest Setting: Monte-Carlo policy evaluation

• Given π, estimate (d0 is initial state
distribution)

• Alg outputs some scalar v; accuracy measured by |v - J(π)|

• Data: trajectories starting from s1~d0 using π (i.e., at= π(st)) 

  
(for simplicity, assume process terminates in H time steps)

• Estimator:

• Guarantee: w.p. at least 1 - δ, |v - J(π)| ≤

Direct consequence of Hoeffding’s inequality (not required)

Depends on value range & sample size

No dependence on anything else, e.g., state/action spaces

J(π) := 𝔼s∼d0
[Vπ(s)]

{(s(i)
1 , a(i)

1 , r(i)
1 , s(i)

2 , …, s(i)
H , a(i)

H , r(i)
H)}n

i=1

1
n ∑n

i=1 ∑H
t=1 γt−1r(i)

t

Rmax

1 − γ
1

2n
ln

2
δ

4

What does “Monte-Carlo” mean?

• Suppose we want to know the value of

• Monte-Carlo estimate: draw x1, x2, …, xn i.i.d. from p;
estimator:

• Beauty of MC: if the value f takes has bounded range, the
approximation guarantee of MC has no dependence on the
cardinality of the X space

• Mapping things to policy evaluation: x is a trajectory, f maps
the trajectory to the discounted return, p is the distribution of
the trajectory determined by the MDP, the initial state
distribution, and the policy

• In RL, Monte-Carlo generally means forming estimates by
rolling out trajectories, typically without using concepts from
Bellman equations

𝔼x∼p[f(x)]

1
n ∑n

i=1 f(xi)

5

Turning Monte-Carlo policy evaluation into a policy
optimization algorithm

• Want to optimize

• have a set of candidate policies

• Estimate the expected return of each candidate, pick the best

• Limitation: can only evaluate a small number of policies

• 0-th order optimization heuristics can be applied (e.g., CMA-
ES for RL; look up the term and do some readings if you are
interested); typically no guarantees

• Even if the MDP has finite & small state/action spaces (“tabular
RL”), finding optimal policy using this strategy takes
exponential sample/computational complexity

J(π) := 𝔼s∼d0
[Vπ(s)]

6

Model-based RL with a sampling oracle

• Assume we can sample r~R(s, a) and s’~P(s, a) for any (s, a)

• Collect n samples per (s, a): . Total sample size n|S×A|

• Estimate an empirical MDP from data

• ,

• i.e., treat the empirical frequencies of states appearing in
 as the true distribution

• Plan in the estimated model and return the optimal policy

• Guarantee (not required): to make sure that the optimal policy of

 is ε-optimal in the true MDP with probability at least 1-δ, we
need a total sample size of

• Can be applied on an arbitrarily generated dataset; works as
long as each (s,a) has enough samples.

{(ri, s′￼i)}n
i=1

M̂
R̂(s, a) := 1

n ∑n
i=1 ri

̂P(s′￼|s, a) := 1
n ∑n

i=1 𝕀[s′￼i = s′￼]

{s′￼i}n
i=1

M̂
poly(|S | , |A | ,1/(1 − γ),1/ϵ,1/δ)

7

Model-based RL with a sampling oracle

• Useful as an efficient approximate planner for tabular MDPs with
moderately large state spaces

• Exact value iteration: O(|S|2 |A|) computation per iteration

• With sampled data: O(|S||A|n) per iteration

• Note: you don’t even need to explicitly build !

• Bellman update at (s,a):

• equal to

• In practice, n = 20 is usually sufficient

• Even if |S| is much larger!

• which means the transition distributions are estimated very

poorly… but we can still find optimal policy, and this is backed
up by theory (won’t be covered in this course)

M̂
R̂(s, a) + γ𝔼s′￼∼ ̂P(s,a)[maxa′￼ f(s′￼, a′￼)]

1
n ∑n

i=1 (ri + γ maxa′￼ f(s′￼i, a′￼))

8

“empirical Bellman update”

Model-based RL with a sampling oracle

• Can also be applied to policy evaluation—in fact you can do
almost everything given that you have a generative model of the
world (though it’s approximate)

• Also known under the name “certainty-equivalence”

• Will switch gears to other methods, and mention connection later

9

