The Learning Setting

RL: Planning or Learning?

* S0 far we have considered planning
* |.e., given MDP model, how to compute optimal policy

* More broadly, whenever the MDP model (i.e., reward &
transition functions) is known, it is the planning setting

* Learning: MDP model is unknown, but we are given/can collect
data from the MDP (often in the form of (s, a, 7, s”))

* Defining a concrete learning problem involves many factors...

* |s data passively given (batch/offline/off-policy), or we can
collect ourselves and decide how to act (online)?

* |s data a bag of 4-tuples, or are they in the form of trajectories?
* Are we interested in policy evaluation or optimization”

RL: Planning or Learning?

* [earning can be useful even if the final goal is planning

esp. when |S| is large and/or only blackbox simulator
e.g., AlphaGo, video game playing, simulated robotics

“‘Sampling-based planning”—what RL has been mostly about
historically (despite the word “learning” in its name!)

Can run simulator to generate data indefinitely
Major concern: computational complexity

* Learning as a problem

e.g., adaptive medical treatment, dialog systems

Data is limited. Sample complexity (data efficiency) is as
important as computational complexity

Additional concerns about e.g., safety

Simplest Setting: Monte-Carlo policy evaluation

Given mt, estimate J(x) := E,_; [V*(s)] (do is initial state
distribution)

Alg outputs some scalar v; accuracy measured by |v - J(17)]

Data: trajectories starting from si~do using 7 (i.e., a= 1t(st))

{(S(l) (l) l(l)’ 2(1),” [(;) I(;) I(;))}

(for simplicity, assume process terminates in H time steps)
- R L H 1—1..0)
Estimator: —3 . > _ v r

Guarantee: w.p. at least 1 -9, |v - J(11)| <

Rmax\/l 2
In —
l—yV 2n 6

o Direct consequence of Hoeftding’s inequality (not required)

o Depends on value range & sample size

o No dependence on anything else, e.g., state/action spaces

What does “Monte-Carlo” mean?

Suppose we want to know the value of k[f(x)]

Monte-Carlo estimate: draw x1, x2, ..., x, i.i.d. from p;
. 1
estimator: — 37" f(x;)

Beauty of MC: if the value f takes has bounded range, the
approximation guarantee of MC has no dependence on the
cardinality of the X space

Mapping things to policy evaluation: x Is a trajectory, f maps
the trajectory to the discounted return, p is the distribution of

the trajectory determined by the MDP, the initial state
distribution, and the policy

In RL, Monte-Carlo generally means forming estimates by
rolling out trajectories, typically without using concepts from
Bellman equations

Turning Monte-Carlo policy evaluation into a policy
optimization algorithm

Want to optimize J(x) := Egoq, [VF(s)]
have a set of candidate policies

Estimate the expected return of each candidate, pick the best

Limitation: can only evaluate a small number of policies

* 0O-th order optimization heuristics can be applied (e.g., CMA-
ES for RL; look up the term and do some readings if you are
interested); typically no guarantees

Even if the MDP has finite & small state/action spaces (“tabular
RL"), finding optimal policy using this strategy takes
exponential sample/computational complexity

Model-based RL with a sampling oracle

Assume we can sample r~R(s, a) and s’~P(s, a) for any (s, a)
Collect n samples per (s, a): {(r;, 7)), . Total sample size n|SxA]

Estimate an empirical MDP M from data

. ﬁ(s, a) .= L ?21 r;, f’(s’|s, a) .= %Z?zl Ils; = 5]

* |.e., treat the empirical frequencies of states appearing in
{s7};_, as the true distribution

Plan in the estimated model and return the optimal policy

Guarantee (not required): to make sure that the optimal policy of
M is e-optimal in the true MDP with probability at least 1-6, we

need a total sample size of poly(|S|, |A|,1/(1 —y),1/€,1/5)

Can be applied on an arbitrarily generated dataset; works as
long as each (s,a) has enough samples.

Model-based RL with a sampling oracle

Useful as an efticient approximate planner for tabular MDPs with
moderately large state spaces

Exact value iteration: O(|S|° |A|) computation per iteration
With sampled data: O(|S||A|n) per iteration
 Note: you don't even need to explicitly build M!
- Bellman update at (s,a): R(s,a) + vE,._p(,[max, f(s’, a")]
e equalto %2;;1 (r, + y max,, f(s},a))

In practice, n = 20 is usually suﬁ‘iciek*“empiricelI Bellman update

* Evenif|S|is much larger!

* which means the transition distributions are estimated very
poorly... but we can still find optimal policy, and this is backed
up by theory (won't be covered in this course)

Model-based RL with a sampling oracle

Can also be applied to policy evaluation—in fact you can do
almost everything given that you have a generative model of the
world (though it's approximate)

Also known under the name “certainty-equivalence”
Wil switch gears to other methods, and mention connection later

