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Bayesian Decision Making

• In most part of this course we’ve taken a frequentist view of 
decision-making under uncertainty 
• e.g., the sample complexity guarantees we give in the 

exploration section are also worst-case bounds 
• that is, regardless of how nature picks the problem instance 

from a predetermined family (e.g., all MDPs whose state 
space is S)—possibly in an adversarial manner—the 
guarantee always holds 

• The alternative: Bayesian RL 
• assume some prior over problem instances 
• use data to update the posterior according to Bayes rule
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Review: Bayesian estimation of the bias of a coin

• Suppose we have a coin with unknown bias θ 
• Want to estimate θ from i.i.d. coin tosses X1, …, Xn 
• Frequentist approach/analysis:  ; can bound  

by Hoeffding’s regardless of what value θ takes  
• worst-case over all Bernoulli distributions with  
• Fix θ, the distribution of Xi is well-defined, but there is no 

such thing as “distribution of θ”

̂θ = 1
n ∑i Xi |θ − ̂θ |

θ ∈ [0,1]
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Review: Bayesian estimation of the bias of a coin

• Suppose we have a coin with unknown bias θ 
• Want to estimate θ from i.i.d. coin tosses X1, …, Xn 
• Bayesian approach 

• First, pick a prior, which is a distribution over θ 
• Often pick beta distribution (conjugate to Bernoulli)  
θ ~ p = beta(a, b), where a and b represents belief in prior 

• Use data to compute posterior: 
 

• In the special case here, the 
update is easy: q is still a beta,  
but you add #heads to a and  
#tails to b

q(θ) ∝ p(θ) Pr[X1:n |θ]

fig from: https://towardsdatascience.com/
dirichlet-distribution-a82ab942a879

https://towardsdatascience.com/dirichlet-distribution-a82ab942a879
https://towardsdatascience.com/dirichlet-distribution-a82ab942a879
https://towardsdatascience.com/dirichlet-distribution-a82ab942a879
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From Bayesian Prediction to Decision-making

• The bayesian stuffs you learn from a standard ML class is 
about prediction 

• You get a posterior over the true world, which is often not what 
you want (e.g., we may want point estimates or confidence 
intervals) 

• You are told to induce the quantities of interest from the 
posterior in anyway you want—there is no unique answer to 
how you do this 

• In Bayesian decision-making, there is always a well-defined 
notion of optimal decision-making 
• e.g., in the exploration-exploitation setting, we will see that 

Bayesian optimality is well-defined with an interesting 
connection to POMDPs



6

Bayesian Multi-armed Bandits

• Consider a multi-armed bandit, where the reward of each arm 
follows a Bernoulli distribution with unknown parameter θi (for i=1, 
…, K, where  K is the number of arms) 

• In the Bayesian setting, we need to pick a prior p for {θi}i=1,…,K 
• For simplicity, let’s say each θi  follows an i.i.d. beta 
• Here i.i.d.ness of {θi} implies that data from one arm will not be 

used to update the posterior of any other arm (i.e., no 
generalization) 

• (Bayesian) Metric for the algorithm’s performance 
• Suppose algorithm interacts with the env for T rounds 
• In round t, the algorithm gets reward rt 

• Metric:  

• What is the optimal value and what is an algorithm that achieves it?

𝔼{θi}∼p [∑T
t=1 rt exec alg in problem instance {θi}]
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Define Bayesian Optimality

• Key result: The Bayesian optimal value and algorithm are 
defined by the optimal value and policy in a belief MDP 
(sometimes also called Bayesian Adaptive MDP/POMDP) 

• Defining the belief MDP 
• State space: the space of possible posteriors q over {θi} 

(sometimes also called an information state) 
• Action space: same as the original problem (K arms) 
• Reward function:  
• Transition function: (defined via a generative process) when 

we take action a in state q, we transition to q’ as:  
 

• Horizon is T (finite-horizon, undiscounted) 
• Claim: optimal policy in this MDP (which maps (belief, time-

step) to actions) is an algorithm that achieves Bayes 
optimality

R(q, a) = 𝔼{θi}∼q[θa]

{θi} ∼ q, r ∼ Ber(θa), q′ = BeliefUpdate(q, a, r)
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Compare the original vs the Bayesian problems

• Learning vs planning 
• Original: learning under uncertainty (model unknown) 
• Bayesian RL: planning with fully known transition model 

• Horizon 
• Original: one-shot decision making (bandits) 
• Bayesian RL: sequential decision-making with (extremely) 

long horizon T 
• Algorithm style for exploration-exploitation 

• Original: the metric requires to balance exploration and 
exploitation 

• Bayesian RL: no need to explicit balance exp-exp. The 
optimal policy balances exp-exp optimally (by definition)!
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Challenges in Bayesian RL & Practical Algorithms

• Solving the belief MDP is computationally very challenging 
• State space is too large and complex (all posteriors) 
• Horizon is extremely long 

• Practical heuristic algorithm: Thompson sampling 
• Extremely simple: given posterior q, sample a problem 

instance from q, and make decisions greedily w.r.t. the 
sampled instance! 

• Automatically balance exp-exp 
• No hyperparameters (apart from the prior) 

• Practical meta-level algorithm: MCTS 
• Simplified case: use Monte-Carlo control for one-step policy 

improvement (over a heuristic algorithm) 
• Computation: O(T) => O(nT2) where n is the number of 

simulations run in each real time step
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Further comments

• We consider a MAB here, but the way to handle an MDP or 
even POMDP (say with finite horizon H) is very similar 
• The corresponding Bayesian-Adaptive MDP (BAMDP) has 

a horizon of HT, where T, is the total number of episodes 
• The state in the BAMDP is (original state, posterior over 

MDP family) 
• Exercise: define the BAMDP yourself 

• Besides computation, another issue is the choice of prior 
• (Die-hard Bayesians will tell you prior is “never wrong”) 
• Similar to the choice of function approximation in the 

frequentist approach (bias-variance trade-off) 
• For MDPs, a popular choice is i.i.d. Dirichlet for each  

P(.|s,a) => Bayesian version of “tabular RL” 
• Another limitation of Bayesian RL: must be model-based 

almost by definition


