
Partially observable systems

2

Partially observable systems

• Key assumption so far: Markov property

• Real-world is non-Markov / partially observable (PO)

- Or you wouldn’t need memory

• Examples in ML

text modeling (last word cannot predict what’s
next; need to capture long-term dependencies)

to ‘no-operation’ and ‘fire’. Arrows correspond to movements with (black) or without (white) ‘fire’.
There are positive correlations between actions that have the same movement directions (e.g., ‘up’
and ‘up+fire’), and negative correlations between actions that have opposing directions. These re-
sults are reasonable and discovered automatically in learning good predictions.

Distinguishing Controlled and Uncontrolled Objects is itself a hard and interesting problem.
Bellemare et al. [2] proposed a framework to learn contingent regions of an image affected by agent
action, suggesting that contingency awareness is useful for model-free agents. We show that our
architectures implicitly learn contingent regions as they learn to predict the entire image.

Prev.	frame Next	frame Prediction

Action Non-Action
Figure 8: Distinguishing controlled and
uncontrolled objects. Action image shows
a prediction given only learned action-
factors with high variance; Non-Action
image given only low-variance factors.

In our architectures, a factor (fi = (Wa
i,:)

>a) with higher
variance measured over all possible actions, Var (fi) =

Ea

h
(fi � Ea[fi])

2
i
, is more likely to transform an image

differently depending on actions, and so we assume such
factors are responsible for transforming the parts of the
image related to actions. We therefore collected the high
variance (referred to as “highvar”) factors from the model
trained on Seaquest (around 40% of factors), and collected
the remaining factors into a low variance (“lowvar”) subset.
Given an image and an action, we did two controlled for-
ward propagations: giving only highvar factors (by setting
the other factors to zeros) and vice versa. The results are
visualized as ‘Action’ and ‘Non-Action’ in Figure 8. In-
terestingly, given only highvar-factors (Action), the model
predicts sharply the movement of the object controlled by
actions, while the other parts are mean pixel values. In con-
trast, given only lowvar-factors (Non-Action), the model
predicts the movement of the other objects and the back-
ground (e.g., oxygen), and the controlled object stays at its
previous location. This result implies that our model learns
to distinguish between controlled objects and uncontrolled objects and transform them using disen-
tangled representations (see [25, 24, 37] for related work on disentangling factors of variation).

5 Conclusion
This paper introduced two different novel deep architectures that predict future frames that are de-
pendent on actions and showed qualitatively and quantitatively that they are able to predict visually-
realistic and useful-for-control frames over 100-step futures on several Atari game domains. To
our knowledge, this is the first paper to show good deep predictions in Atari games. Since our ar-
chitectures were domain independent we expect that they will generalize to many vision-based RL
problems. In future work we will learn models that predict future reward in addition to predicting
future frames and evaluate the performance of our architectures in model-based RL.
Acknowledgments. This work was supported by NSF grant IIS-1526059, Bosch Research, and
ONR grant N00014-13-1-0762. Any opinions, findings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily reflect the views of the sponsors.

References
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An evalua-

tion platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
[2] M. G. Bellemare, J. Veness, and M. Bowling. Investigating contingency awareness using Atari 2600

games. In AAAI, 2012.
[3] M. G. Bellemare, J. Veness, and M. Bowling. Bayesian learning of recursively factored environments. In

ICML, 2013.
[4] M. G. Bellemare, J. Veness, and E. Talvitie. Skip context tree switching. In ICML, 2014.
[5] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127,

2009.
[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.
[7] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.

In CVPR, 2012.

8

video prediction

SLAM in robotics (“this place looks familiar;
did I return to the same location?”)

“perceptual aliasing”

3

Models of PO systems

• Observation space O

• Actions space A (omitted in most discussions)

• System starts from initial configuration, and outputs

sequences o1 o2 o3… with randomness

• Markov systems is a special case:

Pr[ot+1:t+k | o1:t] = Pr[ot+1:t+k | ot]

or, ot+1:t+k ⊥ o1:t | ot (treated as r.v.’s)

• In words, last observation is sufficient statistics of history for
predicting future observations

• How restrictive is Markov assumption?

4

Complexity of Markov vs non-Markov systems

• For a Markov chain, the complexity is measured by the number of
states (i.e., number of observations)

• System fully specified by the transition matrix T(o’|o)

• # model parameters = |O|2

• Without Markov assumption?

• System fully specified by Pr[o’|h] for any history h (short for o1:t)

• Probabilities for different histories can be set completely

independently— with horizon L, order |O|L free parameters!

• Even with a finite and small observation space, fully general

dynamical systems are intractable

• Need structure…

5

Partially observable systems

• Example structure: small & finite latent state space

• “this place looks familiar; did I return to the same location?”

• No structural assumption: you always visit a new location

• With structural assumptions: the building only has this

many rooms. You will be in one or another.

SLAM in robotics (“this scene looks
familiar; did I return to the same location?”)

6

Latent Models of PO systems

• Observation space O

• SLAM example: current sensory inputs

• Action space A (again will be ignored in most places)

• Latent/hidden state space Z

• SLAM example: true location

• Implicit assumption: Z is “simple” (e.g., finite & small)

• Model parameters

• Emission probability: E(o|z)
• Transition probability: T(z’|z) (controlled case: T(z’|z, a)

• Sometimes, also the initial distribution: d0(z)

• Markov chain is special case: identity emission

7

Graphical representation

zt+1zt

ot ot+1

…T

E E

8

Myth 1 about HMMs/POMDPs

• PO can stem from noisy sensors, which compresses/loses
information from “world state”

• Noisier sensors = more PO?

• Mathematically, if we fix the underlying MDP and vary the

emission function, an emission that loses more information
gives a more PO process?

• Wrong: If emission discards all information, the process
becomes Markov!

9

Myth 2 about HMMs/POMDPs

• When the problem is non-Markov, people will say “oh it’s a
POMDP”

• …which assumes POMDP is fully general?

• Not really: there are systems that can be succinctly

represented but require infinitely many hidden states to be
represented as a POMDP/HMM

• Again, the most general way to specify a PO system is just
Pr[ot+1=o’|o1:t], or Pr[o’| h] for short (h for history)

• any (possibly PO) environment is equivalent to an MDP

whose state is the history in the original environment

10

Major challenge in PO systems: state representation

• Examples

• Text prediction: how to compactly summarize the sentence

so far to predict future words? (that’s what you are
computing as the hidden vector in an LSTM)

• SLAM: how to map history of sensor readings to physical
locations (or a belief about it)

• What does state mean in the PO setting?

Definition: State is a function of history, φ, that is a sufficient
statistics for predicting future. That is, for all e:=ot+1:t+k and h:=o1:t,

Pr[e | h] = Pr[e | φ(h)]

11

Computing a compact state given the model

• Suppose we know the HMM model E(o|z), T(z’|z), d0(z)

• How to compactly summarize any history o1:τ?

• Belief state: where

• belief state is state

• Computing belief state

• Initialization: (is empty history)

• Update using Bayes rule: if we know , then we can

compute as (ho is the concatenation of h and o) 

• Enumerator:
 

ϕ(h) = [ℙ[zt+1 = z |h]]z∈Z ∈ ℝ|Z| t := |h |

ϕ(∅) = d0 ∅

ϕ(h)
ϕ(ho)

ℙ[zt+2 = z′￼|ho] =
ℙ[zt+2 = z′￼, oτ+1 = o |h]

ℙ[ot+1 = o |h]

ℙ[zt+2 = z′￼, ot+1 = o |h] = ∑
z∈Z

ℙ[zt+2 = z′￼, ot+1 = o |h, zt+1 = z] ℙ[zt+1 = z |h]

= ∑
z∈Z

T(z′￼|z)E(o |z) ℙ[zt+1 = z |h]

12

Computing a compact state given the model

• Matrix form: Let T be the |Z|x|Z| transition matrix, and Eo be a
|Z|x|Z| diagonal matrix whose z-th diagonal entry is E(o|z)

•

• The matrix form is also useful for making predictions, e.g., 

• The controlled case:

• define Ta as the |Z|x|Z| matrix, whose (z’,z)-th entry is  

T(z’|z, a)

• To compute belief state and make predictions: replace

above by

• e.g.,

• meaning of LHS: at time t, if the history is h, and we will

take actions for the next k steps, what is the
probability that we observe ?

ϕ(ho) ∝ T Eo ϕ(h)

ℙ[ot+1:t+k |h] = 1⊤TEot+k
TEot+k−1

⋯TEot+2
TEot+1

ϕ(h)

T Eo
Ta Eo

ℙ[ot+1:t+k |h, at+1:t+k] = 1⊤TEot+k
Tat+k

Eot+k−1
⋯Tat+2

Eot+2
Tat+1

Eot+1
ϕ(h)

at+1:t+k
ot+1:t+k

13

State!

• Trivial function that is state?

• History itself (identity map): φ(h) = h

• There is another one: where E is the (infinite) set

of all future events

• For HMMs/POMDPs, belief state, (Pr[zτ=z|h])z∈Z, is state

• To an old-school RL person, be careful when you say “state”

without a modifier…

• Things that are not states and people call “state”

• Observation: e.g., Atari game frame

• Hidden state (“World state”) : not a function of history

• Agent state: can be approximately a state

{Pr[e |h]}e∈E

Why?

14

Policy optimization in a POMDP
• Consider a POMDP that is specified by:

• Emission probability: E(o|z)
• Transition probability: T(z’|z, a)

• Initial distribution of hidden state: d0(z)

• Reward function: R(z, a)

• And some notion of horizon (e.g., a finite horizon of H)

• We’d like to link to familiar concepts in MDPs…

• Any POMDP is equivalent to an MDP where history of

observations & actions is treated as state

• Value functions & optimal policies immediately well-defined!

• Conceptually useful but practically not—the number of

states is exponentially in H

• (Actually, planning in POMDP is hard anyway (PSPACE-

complete))

MDP

15

Policy optimization in a POMDP
• We know that POMDP is also equivalent to another MDP…

• whose state is the belief state:

• Then we get a continuous MDP whose state space is

• How to define the parameter of this MDP?

• Transition: in any (belief) state , if we take action a,

then the distribution of next (belief) state b’ follows the
below generative process: 

• Similarly,

• Compared to history-based MDP (exponentially many discrete

states), the belief-state MDP has a continuous state space…

• but it is more structured! If two belief vectors are close, the

value functions are also close

• can approximate by e.g., discretization

b(h) ∈ ℝ|Z|

ℝ|Z|

b ∈ ℝ|Z|

z ∼ b, z′￼∼ T(⋅ |z, a), o′￼∼ E(⋅ |z′￼), b′￼= ϕ(ho′￼)

R(b, a) = ∑z∈Z b(z)R(z, a)

16

Policy optimization in a POMDP
• There is more than smoothness…

• Given a fixed deterministic policy π (that maps belief states to

actions), its value function Vπ is linear in b:
; is often called an α-vector

• Implies that V* is piece-wise linear in b, since there are only
finitely many policies (assuming finite observation space and
finite horizon)

• Sometimes a policy is  
dominated by other policies 
and can be pruned

• A popular approach:  
dynamic programming from 
bottom and prune α-vectors 
before applying Bellman eq

Vπ(b) = ⟨b, [Vπ(b, z)]z∈Z⟩ [Vπ(b, z)]z∈Z

Fig credit: https://www.techfak.uni-bielefeld.de/
~skopp/Lehre/STdKI_SS10/POMDP_tutorial.pdf

https://www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10/POMDP_tutorial.pdf
https://www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10/POMDP_tutorial.pdf

17

Learning partially observable systems

• So far we’ve been talking about how to compute belief state
and optimal policy given the HMM/POMDP model

• How to learn such a model from data?

• Standard approach: EM (Expectation-Maximization)

• Consider HMM. Say our data are sequences of
observations in the form of o1:τ

• E-step: pretend that the current estimated model were true,
calculate the posterior over hidden states (given data)

• M-step: pretend that the posterior were true, update the
estimated model to be the maximum likelihood model given
data (observation seq) + posterior over hidden states

• Repeat

• Alternative approach: spectral learning (Method of Moments)

