Partially observable systems



Partially observable systems

* Key assumption so far: Markov property

* Real-world is non-Markov / partially observable (PO)
- Or you wouldn’t need memory

 Examples in ML

Alan Mathison Turing OBE FRS (/tjuerin/; 23 June 1912 — 7 June 1954) was an English
mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical
biologist.[Q] Turing was highly influential in the development of theoretical computer

science, providing a formalisation of the concepts of algorithm and computation with the

text modeling (last word cannot predict what'’s
next; need to capture long-term dependencies)

SLAM in robotics (“this place looks familiar;
did | return to the same location?”)

“perceptual aliasing”

Prev. frame Next frame

video prediction



Models of PO systems

Observation space O

Actions space A (omitted in most discussions)

System starts from initial configuration, and outputs
sequences 01020s3... With randomness

Markov systems is a special case:
Pr[0t+1:t+k | 01:t] = Pr[0t+1:t+k | Ot]
or, or1:t+kL 01+ | 0 (treated asr.v.’s)

* |n words, last observation is sufficient statistics of history tor
predicting future observations

How restrictive is Markov assumption®?



Complexity of Markov vs non-Markov systems

* For a Markov chain, the complexity is measured by the number of
states (i.e., number of observations)

System fully specified by the transition matrix T(o" | 0)
# model parameters = |O)?

e Without Markov assumption?

System fully specified by Pr|o’ | h] for any history h (short for o01.)

Probabilities for different histories can be set completely
independently— with horizon L, order |O|L free parameters!

Even with a finite and small observation space, fully general
dynamical systems are intractable

Need structure...



Partially observable systems

 Example structure: small & finite /atent state space
* “this place looks familiar; did | return to the same location?”
* No structural assumption: you always visit a new location

* With structural assumptions: the building only has this
many rooms. You will be in one or another.

SLAM in robotics (“this scene looks
familiar; did | return to the same location?”)



Latent Models of PO systems

Observation space O

« SLAM example: current sensory inputs

Action space A (again will be ignored in most places)
Latent/hidden state space Z

 SLAM example: true location

* Implicit assumption: Z is “simple” (e.q., finite & small)
Model parameters

* Emission probability: E(o|z)

* Transition probability: T(z"| z) (controlled case: T(z'| z, a)
 Sometimes, also the initial distribution: do(z)

Markov chain is special case: identity emission



Graphical representation
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Myth 1 about HMMs/POMDPs

PO can stem from noisy sensors, which compresses/loses
information from “world state”

Noisier sensors = more PQO?

Mathematically, it we fix the underlying MDP and vary the
emission function, an emission that loses more information
gives a more PO process?

Wrong: It emission discards all information, the process
becomes Markov!



Myth 2 about HMMs/POMDPs

When the problem is non-Markov, people will say “oh it’s a

POMDP”

...which assumes POMDP is

ully general?

Not really: there are systems that can be succinctly
represented but require infinitely many hidden states to be
represented as a POMDP/HMM

Again, the most general way to specity a PO system is just
Pr|ot1=0"1014], or Pr[o” | h ] for short (h for history)

* any (possibly PO) environment is equivalent to an MDP
whose state Is the history in the original environment
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Major challenge in PO systems: state representation

* Examples

* TJext prediction: how to compactly summarize the sentence
so far to predict future words” (that's what you are
computing as the hidden vector in an LSTM)

 SLAM: how to map history of sensor readings to physical
locations (or a belief about it)

* What does state mean in the PO setting?

Definition: State is a function of history, ¢, that is a sufficient
statistics for predicting future. That is, for all e:=0t+1.+x and h:=o01.,

Prle | h] =Prle | ¢(h) ]




11

Computing a compact state given the model

Suppose we know the HMM model E(o | z), T(z"| z), do(z)

How to compactly summarize any history o1.¢7

Belief state: ¢p(h) = [Plz,,, = z| h]].c, € R¥ where 1 := | h|
* belief state /s state

Computing belief state

* [nitialization: ¢(@) = d, (@ is empty history)

 Update using Bayes rule: it we know ¢(h), then we can

compute ¢(ho) as (ho is the concatenation of h and o)
Plz0 =204 = 0|h]

Plo,.; = ol h]

H:D[ZZ+2 — Z/l hO] —

* Enumerator:
Plzyy =204 =0|h] = Z Plzpo = 2,001 = 0| h, 2y = 2] Plzg = 2| h]
ZEL

= Z T(z'| 2)E(0|2) Plzyq = z| Al

7€/
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Computing a compact state given the model

Matrix form: Let T be the |Z|x|Z| transition matrix, and E, be a
|Z|x|Z| diagonal matrix whose z-th diagonal entry is E(o | z)

¢(ho) x TE, p(h)

The matrix form is also useful for making predictions, e.g.,
PO 1.4x|H]l = 1'TE, TE, --TE, TE, ¢(h)

Otk k— Ot42

The controlled case:

* define T, as the |Z|x|Z| matrix, whose (z',z)-th entry is
T(z |z, a)

 Jo compute belief state and make predictions: replace TE,
above by T,

* €.0., Plog,. t+k|h App1pk] = 1'TE, T, E -1, E ¢(h)

0t+k Aivk  Opyk— 1 (PR, R N ) at+1 0t+1

* meaning of LHS: at time t, if the history is h, and we will
take actions a,, ., for the next k steps, what is the
probability that we observe o, ...,
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State!

Trivial function that is state”
 History itself (identity map): ¢(h) =h

* There is another one: {Prle|h]},.r Where E is the (infinite) set
of all future events

For HMMs/POMDPs, belief state, (Pr[z.=z | h]).cz, is state

To an old-school RL person, be careful when you say “state”
without a modifier...

Things that are not states and people call “state”
* Observation: e.g., Atari game frame
* Hidden state (“World state”) : Why?

* Agent state: can be approximately a state



14

Policy optimization in a POMDP

* Consider a POMDP that is specified by:
* Emission probability: E(o|z)

Transition probability: T(z" |z, a)

Initial distribution of hidden state: do(z)
Reward function: R(z, a)

And some notion of horizon (e.g., a finite horizon of H) —

MDP

 We'd like to link to familiar concepts in MDPs...

Any POMDP is equivalent to an MDP where history of
observations & actions Is treated as state

Value functions & optimal policies immediately well-defined!

Conceptua
states Is ex

(Actually, p
complete))

ly useful but practically not—the number of
oonentially in H

anning in POMDP is hard anyway (PSPACE-
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Policy optimization in a POMDP

* We know that POMDP is also equivalent to another MDP...
« whose state is the belief state: b(h) € R4
e Then we get a continuous MDP whose state space is R
 How to define the parameter of this MDP?

» Transition: in any (belief) state b € R, if we take action «,

then the distribution of next (belief) state b’ follows the
below generative process:
z~b, 77~T(-|z,a), o ~E(-|Z), b'= ¢(ho)

o Similarly, R(b,a) = ZZEZ b(2)R(z, a)
 Compared to history-based MDP (exponentially many discrete
states), the belief-state MDP has a continuous state space...

e put it is more structured! If two belief vectors are close, the
value functions are also close

* can approximate by e.qg., discretization
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Policy optimization in a POMDP

There 1s more than smoothness...

Given a fixed deterministic policy 7t (that maps belief states to

actions), its value function V™ is linear in b:
VZ(b) = (b, [V*(b,2)].z); [V*(],2)].c, IS Often called an a-vector

mplies that V* is piece-wise linear in b, since there are only

finitely many policies (assuming finite observation space and
finite horizon)

Sometimes a policy is Vo
dominated by other policies

and can be pruned

A popular approach: V)
dynamic programming from

bottom and prune a-vectors

before applying Bellman eq ° B(s,) :

Fig credit: https://www.techfak.uni-bielefeld.de/
~skopp/Lehre/STAKI SS10/POMDP_tutorial.pdf



https://www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10/POMDP_tutorial.pdf
https://www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10/POMDP_tutorial.pdf
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Learning partially observable systems

* So far we've been talking about how to compute belief state
and optimal policy given the HMM/POMDP model

 How to learn such a model from data”
e Standard approach: EM (Expectation-Maximization)

* Consider HMM. Say our data are sequences of
observations in the form of o01:¢

* E-step: pretend that the current estimated model were true,
calculate the posterior over hidden states (given data)

* M-step: pretend that the posterior were true, update the
estimated model to be the maximum likelihood model given
data (observation seq) + posterior over hidden states

* Repeat
* Alternative approach: spectral learning (Method of Moments)



