
Exploration
reading: Szepesvári 4.2



• 3 core challenges of RL: temporal credit assignment, 
generalization, and exploration


• We’ve studied the first two; how about exploration?

• But what is exploration?

• In other words, if I give you two algorithms, how would you decide 

which one explores better?

2

The exploration challenge



• Assume episodic RL for simplicity

• Interaction protocol: For episode t=1,2,…, T


• Learner generates an episode using policy πt

• πt  may be chosen according to previous data


• Pure exploration: After T rounds, learner outputs a policy 

• Metric:  (recall that )

• This is a random variable! We want alg to perform well most of the 

times, so we often look at the (1-δ)-quantile of this r.v.

• Equivalently: to guarantee that  with probability at 

least 1-δ, how large T needs to be (as a function of , and other 
problem-dependent parameters)


• Such T is called the sample complexity of the algorithm

̂π

J(π⋆) − J( ̂π) J(π) := 𝔼s∼d0
[Vπ(s)]

J(π⋆) − J( ̂π) ≤ ϵ
ϵ, δ

3

Evaluation metrics for good exploration



• In pure exploration, we care about getting a good policy at the 
end of training. So t ≤ T is “training”, and after that it’s test phase


• Training/test distinction may not exist in some applications, where 
we just want to continuously improve the performance online


• This is the exploration-exploitation setting

• Evaluation metric: (cumulative & pseudo) regret 

• Also a r.v.; people consider both high-probability regret (i.e., (1-δ)-

quantile) and expected regret

• If algorithm keeps improving and get closer and closer to , we 

should obtain sublinear regret: 

• In the limit, the average regret , “no-

regret”

∑T
t=1 (J(π⋆) − J(πt))

v⋆

∑T
t=1 J(π⋆) − J(πt) = o(T )
1
T ∑T

t=1 (J(π⋆) − J(πt)) → 0

4

Evaluation metrics for good exploration



• If you care about final performance, measure sample complexity; 
if you care about continuous improvement, measure regret


• You might notice #1: we never mention the word “exploration” in 
these definitions!

• unless you make explicit assumptions to avoid it, exploration is 

a natural and inherent part of RL; no need to call out!

• You might notice #2: we wanted to focus solely on the exploration 

challenge, but end up posing the entire learning problem…

• empirical methods often perform exploration and learning (e.g., 

temporal credit assignment) separately

• however, it turns out that to systematically explore (and get 

provable guarantees), you often cannot separate exploration 
and learning—they need to depend on each other

5

Comments on sample complexity and regret



Uniform exploration in multi-armed bandits 

• MAB: finite-horizon MDP with H = 1 (i.e., contextual bandits) and a 
single (deterministic) starting state. Reward is stochastic


• Assume that reward lies in [0, 1]. Let the expected reward for 
action i be , and the highest one be  (so )


• A simple algorithm for exploration: for t=1,2,…,T
• Choose action No. (t mod |A|), and observe random reward

• Finally, let  be the average over rewards from action i

• Output the action  with the highest  (so )


• Sample complexity of this algorithm: 


• The  factor can be improved by more clever alg

μi μ⋆ = μi⋆ J(π⋆) = μ⋆

̂μi

̂i ̂μi J( ̂π) = μ ̂i

O ( |A |
ϵ2 ln |A |

δ )
ln |A |

6



Uniform exploration in Contextual Bandits

• CB: finite-horizon MDP with H = 1. Starting state is random, and 
typically state space is large (i.e., cannot do tabular)


• Need function approximation: consider policy-based methods

• Assume a class of policies 


• Recall parametrized policy in PG; for now we assume  is finite 
but can be exponentially large (you only want to pay )


• No further assumption (e.g., ). Instead of requiring 
learner to achieve , only require it to achieve 


• Naive alg: treat each policy as an “meta-action”, 


• Can do much better: 


• Uniform exploration + importance sampling

•  comes from: importance weight blows up range of variable 

from [0, 1] to  

Π

Π
log |Π |

π⋆ ∈ Π
J(π⋆) max

π∈Π
J(π)

O ( |Π |
ϵ2 ln |Π |

δ )
O ( |A |

ϵ2 ln |Π |
δ )

|A |
[0, |A | ]

7



Exploration and exploitation

• If we have an algorithm that achieves  sample complexity (C 
absorbs all the other quantities), can we get a no-regret alg?


• Explore-then-exploit: given T rounds/episodes, explore for T1 
rounds, then deploy the learned policy for the rest of rounds


• Regret bound: 

• : assume we get nothing during 

exploration


• We spend T1 rounds exploring: back out 


•

• Combine the two and optimize T1: 

• Typically suboptimal when T is large; optimal algorithm scales 

as 

C
ϵ2

∑T1
t=1 (J(π⋆) − J(πt)) ≤ T1

ϵ = C
T1

∑T
t=T1+1 (J(π⋆) − J(πt)) ≤ C

T1
(T − T1)

O(C1/3T2/3)

T
8



Exploration and exploitation

• When the exploration algorithm (during T1) is uniform, the full 
algorithm is sometimes called “epoch greedy”


• Has similar properties to epsilon-greedy

9



Exploration and exploitation

• Example of a popular algorithm for regret minimization: UCB1 
(Auer et al’02)


• At any round t, 

• let  be the number of times we’ve chosen a so far

• let  be the empirical average of rewards from a


• Define , where  is the range of reward


• Choose the action greedily w.r.t. 

• UCB stands for “Upper confidence bound”: can show that 

 for all t simultaneously with high probability

• Bonus term (2nd term) drops if action is taken more ( )

• Never stop exploring any action ( )

• Main principle for exploration: optimism in face of uncertainty

nt(a)

rt(a)

Ut(a) := rt(a) + ℛ
2 log t
nt(a)

ℛ

Ut( ⋅ )

μa ≤ Ut(a)

nt(a) ↑

log t ↑

10



Exploration in MDPs

• So far we’ve focused on exploration in (multi-arm or contextual) 
bandits. 


• In bandits, we’ve seen that taking uniformly random actions can 
be quite effective


• How about MDPs?

11



12

Random exploration can be inefficient

…

Freeway (one of the Atari games)

visited in 2-H fraction 
of all trajectories

1

2

3

4

H

“Freeway + RL”: https://youtu.be/44CilPmlimQ

https://youtu.be/44CilPmlimQ


Exploration in MDPs

• The construction is called “combination lock”

• Ultimate killer examples for most heuristic exploration 

strategies

• e.g., epsilon greedy, softmax, policy gradient, …


• Why difficult?

• Consider searching over a complete tree, where only one leaf 

is rewarding (marked red)

• Obvious lower bound: you need to try (almost) all the paths

• A variant of comb lock

• If the exploration strategy does 

not leverage state identity, 
no way to distinguish between 
comb lock vs exp tree


• fun fact: they are bisimilar
13



Exploration in MDPs: Deterministic case
• If the MDP is fully deterministic, how can we explore efficiently?

• Exploration = visit each state-action pair reachable from initial state 

once

• Goal: in each episode, visit a new state-action pair. This way we 

are done in |SxA| episodes. 

• argument adapted from Szepesvári Sec 4.2.3


• Observation 1: there always exists some states visited in previous 
episodes that have unexplored actions


• Observation 2: from previous data, we know how to get to those 
states!


• Algorithm: build a partial MDP over visited states. choose any state 
with unexplored actions, get to that state by planning in the partial 
MDP, then take the action. 


• Deterministic transition + stochastic reward: visit each (s,a) 
enough times such that reward estimation is accurate enough

14



Exploration in MDPs: Extending to stochastic case
• Optimism-based interpretation of the previous algorithm:


• In round (episode) t, define the following MDP Mt

• For (s, a) visited before, transition & reward is the same as in M

• Otherwise: transition to a special chain of “heaven” states 

(which don’t exist in M) that gives maximum reward Rmax each 
time step before termination


• Explore by using the optimal policy of Mt

• Optimism: imagine the best for unexplored state-action pairs; 
mathematically, we have 


• Extend the idea to stochastic MDPs: R-max [Brafman & Tennenholtz’02]


• Define Mt similarly: if (s, a) has been visited sufficient number of 
times, use the empirical estimation of transition and reward in 
Mt; otherwise it transitions to the “heaven” states


• Explore by using the optimal policy of Mt

∀π, JM(π) ≤ JMt
(π)

15



Exploration in large MDPs
• Literature on exploration in tabular MDPs with polynomial sample 

complexity is sometimes referred to as PAC-MDP

• typically, poly(|S|, |A|, H)  (ignoring PAC parameters )


• Why don’t we use PAC-MDP algorithms in practice?

• |S| is too large

• PAC algorithm strongly rely on state identity

• i.e., You tell whether a state is novel by comparing it with 

previously visited states

• Identity is meaningless in large problems: you may never see 

the same state twice!

• PAC-RL for function approximation?


• Assume we are given value-function class F to model Q* 

• Goal: poly(log|F|, |A|, H) sample complexity
• There are hardness results showing that this is impossible 

[Krishnamurthy et al’16; Jiang et al’17; Du et al’19]

ϵ, δ

16



Exploration in large MDPs
• Implication of hardness of exploration with function approximation


• Cannot efficiently explore in unstructured environments even 
with the help of good function approximation


• Need to consider structured environments

• What kind of structures enable sample-efficient exploration in RL?

17



✓

✓

✓

Zoo of RL Exploration

Metric space [Kakade et al’03]

Abstraction [Li’09] 

(small #abstract states)

✓

XLQR control

[Ibrahimi et al’12]

(small #variables)

✓ POMDPs w/ rich observation

 and reactive value function


(small #hidden-states)

deterministic dynamics + 
[Krishnamurthy et al’16]✓ ?

Same setup in PSRs 
[Littman et al’02]


(small system dim.)

?

P(x’|x,a) = x

MDPs w/ low-rank transition matrix

[Barreto et al’11]


(small matrix rank)

?

[Jiang et al’17]

• All these settings yield low Bellman rank
• Unified algorithm, polynomial guarantee

new

new

new

18

Worst-case construction

value

hidden 
state

Finite MDPs

[Kearns & Singh’98]


(small #states)

✓

F = {f(· ; ✓) : ✓ 2 ⇥}F = {f(· ; ✓) : ✓ 2 ⇥}


