State Abstractions

What are abstractions and why study them?

- When we use more sophisticated function approximation, we are always generalizing the knowledge learned from one state to other similar states.
 - When is such generalization valid? What states can be considered as "similar"?
- To answer these questions, it is worth studying the simplest form of generalization: abstractions
- State abstractions ≈ aggregate equivalent (or similar) states and run tabular algorithms

Examples of state abstractions

- Multiple ways of expressing an abstraction
 - Mapping ϕ from original (or *raw*) states to abstract states
 - Partition over the state space
 - An equivalence notion over raw states
- Example 1: discretize a continuous state space
 - Mapping from continuous state to the grid
 - Partition is obvious
 - Two original states are equivalent if they fall in the same grid
- Example 2: Suppose the original state is described by some state variables s = (x, y). $\phi(s) = x$ is an abstraction
 - mapping $\phi : (x, y) \mapsto x$
 - Partition over {(*x*, *y*)}
 - $s_1 = (x_1, y_1)$ is equiv to $s_2 = (x_2, y_2)$ iff $x_1 = x_2$ (i.e., $\phi(s_1) = \phi(s_2)$)

Notations and Formal Setup

- MDP $M = (S, A, P, R, \gamma)$
- Abstraction $\phi: S \rightarrow S_{\phi}$
- Surjection aggregate states and treat as equivalent
- Are the aggregated states really equivalent?
- Do they have the same...
 - optimal action?
 - Q* values?
 - dynamics and rewards?

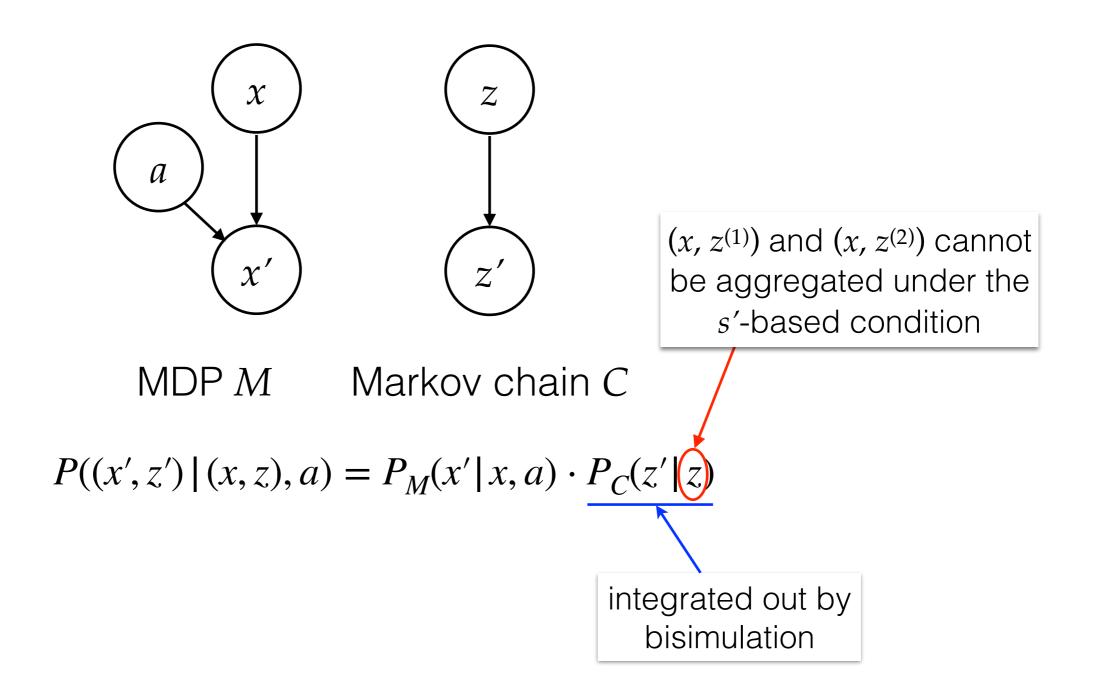
Abstraction hierarchy

An abstraction ϕ is ... if ... $\forall s^{(1)}, s^{(2)}$ where $\phi(s^{(1)}) = \phi(s^{(2)})$

- π^* -irrelevant: $\exists \pi_M^* \text{ s.t. } \pi_M^*(s^{(1)}) = \pi_M^*(s^{(2)})$
- Q^* -irrelevant: $\forall a , Q_M^*(s^{(1)}, a) = Q_M^*(s^{(2)}, a)$
- Model-irrelevant: $\forall a \in A$, $R(s^{(1)}, a) = R(s^{(2)}, a)$ (bisimulation) $\forall a \in A, x' \in S_{\phi}, P(x' \mid s^{(1)}, a) = P(x' \mid s^{(2)}, a)$ $\sum_{s' \in \phi^{-1}(x')} P(s' \mid s^{(1)}, a)$

Theorem: Model-irrelevance $\Rightarrow Q^*$ -irrelevance $\Rightarrow \pi^*$ -irrelevance

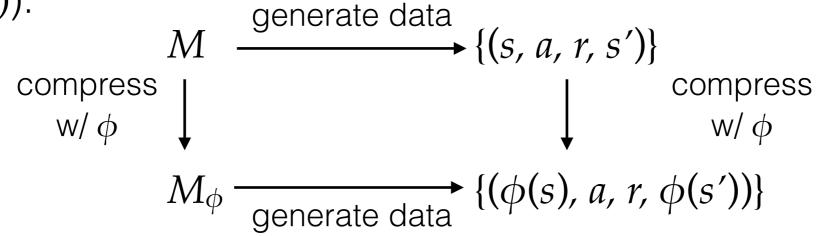
Why not $P(s' | s^{(1)}, a) = P(s' | s^{(2)}, a)$?



The abstract MDP implied by bisimulation

 ϕ is bisimulation: $R(s^{(1)}, a) = R(s^{(2)}, a)$, $P(x' \mid s^{(1)}, a) = P(x' \mid s^{(2)}, a)$

- MDP $M_{\phi} = (S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma)$
- For any $x \in S_{\phi}$, $a \in A$, $x' \in S_{\phi}$
 - $R_{\phi}(x, a) = R(s, a)$ for any $s \in \phi^{-1}(x)$
 - $P_{\phi}(x' \mid x, a) = P(x' \mid s, a)$ for any $s \in \phi^{-1}(x)$
- No way to distinguish between the two routes (if *a* only depends on $\phi(s)$):



Bisimulation $=> Q^*$ -irrelevance

- Consider the Q^{*} in M_{ϕ} , $Q_{M_{\phi}}^{\star}$ (dimension: $|S_{\phi} \times A|$)
- Lift $Q_{M_{\phi}}^{\star}$ from S_{ϕ} to S (populate aggregated states with the same value)
- Useful notation: Φ is a $|S_{\phi}| \times |S|$ matrix, with $\Phi(x, s) = \mathbb{I}[\phi(s) = x]$
 - lifting a state-value function: $[V_{M_{\phi}}^{\star}]_{M} = \Phi^{\top} V_{M_{\phi}}^{\star}$
 - collapsing the transition distribution: $\Phi P(s, a)$

• Claim:
$$\left[Q_{M_{\phi}}^{\star}\right]_{M} = Q_{M}^{\star}$$
 (proof)

Useful/fun facts about bisimulation

- Q_M^{π} is preserved for any π lifted from an abstract policy
- Given any lifted π, distribution over reward sequence is preserved (assuming reward is deterministic function of s, a)
- Coarsest bisimulation always exists: in any MDP, the common coarsening of two bisimulations is always a bisimulation
 - e.g., ϕ_1 tells you to ignore some state variables, ϕ_2 tells you to ignore some others => can ignore both sets of variables!
 - Intuitive but nontrivial; needs proof (see notes)

Useful/fun facts about bisimulation

- Recall that bisimulation is defined by a reward condition and a transition condition
- Guess what's the coarsest bisimulation if we drop the reward condition and only require the transition condition?
 - Aggregate all states together!
 - reward function defines a notion of (short-term) saliency
 - can extend the definition by replacing reward function with other functions (even not real-valued ones) whose codomain is equipped with an equivalence notion

The abstract model

- Consider planning, e.g., want to plan in the abstract model instead of the original model to reduce computation cost
- Approach: compress the model (M_{ϕ}) , and plan in M_{ϕ} (and lift the policy back to M)
- We already showed: if ϕ is bisimulation, this approach produces an optimal policy of M
- What if ϕ is Q^* -irrelevant? or π^* -irrelevant?
- π^* -irrelevant: learned policy can be suboptimal (see refs in Li et al'06)
- Q*-irrelevant: surprisingly, optimality is preserved; for details and further reading, see ref notes.

Extension to handle action aggregation/permutation: Homomorphisms

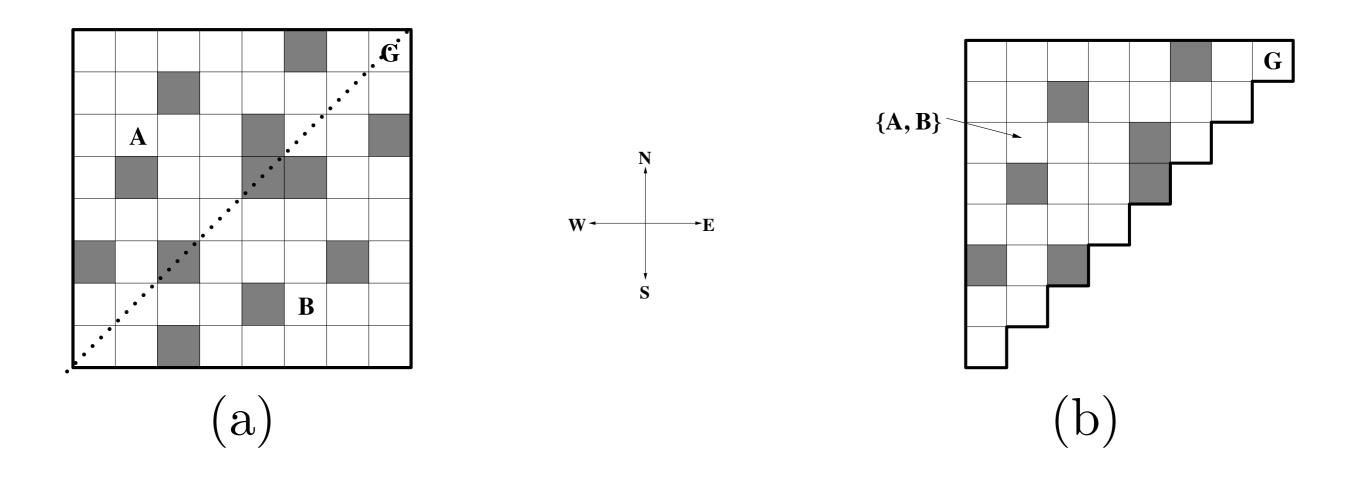


Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for non-exact minimization in Markov Decision Processes. 2004.

Approximate abstractions

- 1. ϕ is an ϵ_{π^*} -approximate π^* -irrelevant abstraction, if there exists an abstract policy $\pi : \phi(\mathcal{S}) \to \mathcal{A}$, such that $\|V_M^* V_M^{[\pi]_M}\|_{\infty} \leq \epsilon_{\pi^*}$.
- 2. ϕ is an ϵ_{Q^*} -approximate Q^* -irrelevant abstraction if there exists an abstract Q-value function $f: \phi(S) \times A \to \mathbb{R}$, such that $\|[f]_M Q_M^*\|_{\infty} \leq \epsilon_{Q^*}$.
- 3. ϕ is an (ϵ_R, ϵ_P) -approximate model-irrelevant abstraction if for any $s^{(1)}$ and $s^{(2)}$ where $\phi(s^{(1)}) = \phi(s^{(2)}), \forall a \in \mathcal{A}$,

$$|R(s^{(1)}, a) - R(s^{(2)}, a)| \le \epsilon_R, \quad \left\| \Phi P(s^{(1)}, a) - \Phi P(s^{(2)}, a) \right\|_1 \le \epsilon_P.$$
(3)

Theorem 2. (1) If ϕ is an (ϵ_R, ϵ_P) -approximate model-irrelevant abstraction, then ϕ is also an approximate Q^* -irrelevant abstraction with approximation error $\epsilon_{Q^*} = \frac{\epsilon_R}{1-\gamma} + \frac{\gamma \epsilon_P R_{\max}}{2(1-\gamma)^2}$. (2) If ϕ is an ϵ_{Q^*} -approximate Q^* -irrelevant abstraction, then ϕ is also an approximate π^* -irrelevant abstraction with approximation error $\epsilon_{\pi^*} = 2\epsilon_{Q^*}/(1-\gamma)$.