State Abstractions



What are abstractions and why study them?

 When we use more sophisticated function approximation, we are

always generalizing the knowledge learned from one state to
other similar states.

* When is such generalization valid? What states can be
considered as “similar”?

* To answer these questions, it is worth studying the simplest form
of generalization: abstractions

e State abstractions = aggregate equivalent (or similar) states and
run tabular algorithms



Examples of state abstractions

* Multiple ways of expressing an abstraction
 Mapping ¢ from original (or raw) states to abstract states
* Partition over the state space
* An equivalence notion over raw states
* Example 1: discretize a continuous state space
* Mapping from continuous state to the grid
* Partition is obvious
* Two original states are equivalent if they fall in the same grid

 Example 2: Suppose the original state is described by some state
variables s = (x,y). ¢(s) = x IS an abstraction

* mapping ¢ : (x,y) = x
e Partition over {(x,y)}

* 5p = (x1, 1) IS €QUIV 10 55 = (x5, 3y) ITf x; = x, (1.€., @(s)) = (s)))



Notations and Formal Setup

MDP M =(S, A, PR, y)

Abstraction ¢ : S =S5

Surjection — aggregate states and treas
Are the aggregated states really equiva
Do they have the same...

e optimal action?

* Q" values?

* dynamics and rewards”

- as equivalent

ent?



Abstraction hierarchy

An abstraction ¢ is ... if ... ¥ s, s@ where ¢(sV)) = ¢(s?)
o r-irrelevant: 3 i, * s.t. my,*(sW) = 1, *(s@)
o Q*irrelevant: Va, Q,,“(sW, a) = Q,,% (s, a)

* Model-irrelevant: V a € A, R(sM), ga) = R(s?), a)
(bisimulation) Vae A x' €Sy, P’ |sD, a)=Px" | s?),a)

l

P(s'| s, a)

zs’éqb—l(x’)

Theorem: Model-irrelevance = Q*-irrelevance = m*-irrelevance



Why not P(s” | s, a)=P(s" | s@, a)

@ O

(x, zD) and (x, z®) cannot
be aggregated under the
s’-based condition

MDP M Markov chain C

P((x,z2") [ (x,2),a) = Py (x'| x,a) - P(Z|

\

iIntegrated out by
bisimulation




The abstract MDP implied by bisimulation

¢ is bisimulation: R(s®, a) = R(s@, a), P(x" | s, a) = P(x" | 5@, a)
* MDP My=(Sy, A, Py, Ro, )
* Foranyxe S¢,ae A, x € Sy

* Ry(x, a) = R(s, a) for any s € ¢1(x)

* Py(x"1x,a)=P(x’ls, a)foranys e ¢l(x)

* No way to distinguish between the two routes (if a only depends

on ¢(s)): generate data
M ~{(s, a, 7, 8")}
compress compress
w/ ¢ l l w/ ¢
M, > {(9(s), a, 7, p(s")}

generate data



Bisimulation => Q*-irrelevance

Consider the Q% in My, @y, (dimension: |SpxA|)

Lift QAZ[) from S¢ t0 S (populate aggregated states with the same value)

Useful notation: @ isa |S§,| X | S| matrix, with

D(x, 5) = l[p(s) = x]

+ lifting a state-value function: [V}, 1y, = @V},

* CO

Claim:

lapsing the transition distribution: ® P(s, a)

:QA’ZJM = Q5 (proof)



Useful/fun facts about bisimulation

o ()" IS preserved for any m lifted from an abstract policy

* (Given any lifted mt, distribution over reward sequence is preserved
(assuming reward is deterministic function of s, a)

e Coarsest bisimulation always exists: in any MDP, the common
coarsening of two bisimulations is always a bisimulation

* e.9., ¢1 tells you to ignore some state variables, ¢» tells you to
ignore some others => can ignore both sets of variables!

* |ntuitive but nontrivial; needs proof (see notes)
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Useful/fun facts about bisimulation

* Recall that bisimulation is defined by a reward condition and a
transition condition

* (Guess what’s the coarsest bisimulation it we drop the reward
condition and only require the transition condition”

Aggregate all states together!
reward function defines a notion of (short-term) saliency

can extend the definition by replacing reward function with
other functions (even not real-valued ones) whose codomain is
equipped with an equivalence notion
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The abstract model

Consider planning, e.g., want to plan in the abstract model
iInstead of the original model to reduce computation cost

Approach: compress the model (M), and plan in My (and lift the
policy back to M)

We already showed: if ¢ is bisimulation, this approach produces
an optimal policy ot M

What it ¢ is Q*-irrelevant”? or t*irrelevant?

rt*-irrelevant: learned policy can be suboptimal (see refs in Li et
al’0o)

Q*-irrelevant: surprisingly, optimality is preserved; for details and
further reading, see ret notes.



Extension to handle action aggregation/permutation:
Homomorphisms

I

-
o
o

(b)

Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for
non-exact minimization in Markov Decision Processes. 2004.
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Approximate abstractions

1. ¢is an e «-approximate m*-irrelevant abstraction, if there exists an abstract policy 7 : ¢(S) — A,
such that ||V}, — V]\[;]M oo < €xx.

2. ¢ is an eg+-approximate ()*-irrelevant abstraction if there exists an abstract ()-value function
f:0(5) x A—=R,suchthat ||[flar — Qislle < €0+

3. ¢isan (eg, ep)-approximate model-irrelevant abstraction if for any s() and 5(2) where (b(s(l)) —
o(s2)), Va € A,

R(s'W,a) — R(s?,a)| < er, HCIDP(S(I),a) — dP(s?), CL)H1 < ep. (3)

Theorem 2. (1) If ¢ is an (eg, ep)-approximate model-irrelevant abstraction, then ¢ is also an approximate
Q*-irrelevant abstraction with approximation error g« = 1% + %.
(2) If ¢ 1s an eg~-approximate QQ*-irrelevant abstraction, then ¢ is also an approximate w*-irrelevant abstraction

with approximation error €, = 2eq+ /(1 — 7).




