
State Abstractions

• When we use more sophisticated function approximation, we are
always generalizing the knowledge learned from one state to
other similar states.

• When is such generalization valid? What states can be

considered as “similar”?

• To answer these questions, it is worth studying the simplest form

of generalization: abstractions

• State abstractions ≈ aggregate equivalent (or similar) states and

run tabular algorithms

2

What are abstractions and why study them?

• Multiple ways of expressing an abstraction

• Mapping from original (or raw) states to abstract states

• Partition over the state space

• An equivalence notion over raw states

• Example 1: discretize a continuous state space

• Mapping from continuous state to the grid

• Partition is obvious

• Two original states are equivalent if they fall in the same grid

• Example 2: Suppose the original state is described by some state
variables . is an abstraction

• mapping

• Partition over

• is equiv to iff (i.e.,)

ϕ

s = (x, y) ϕ(s) = x

ϕ : (x, y) ↦ x

{(x, y)}

s1 = (x1, y1) s2 = (x2, y2) x1 = x2 ϕ(s1) = ϕ(s2)
3

Examples of state abstractions

• MDP M = (S, A, P, R, γ)

• Abstraction φ : S →Sφ

• Surjection — aggregate states and treat as equivalent

• Are the aggregated states really equivalent?

• Do they have the same…

• optimal action?

• Q* values?

• dynamics and rewards?

4

Notations and Formal Setup

An abstraction φ is … if … ∀ s(1), s(2) where φ(s(1)) = φ(s(2))

• π*-irrelevant: ∃ πM* s.t. πM*(s(1)) = πM*(s(2))

• Q*-irrelevant: ∀ a , QM*(s(1), a) = QM*(s(2), a)

• Model-irrelevant: ∀ a ∈ A, R(s(1), a) = R(s(2), a) 
 ∀ a ∈ A, x’ ∈Sφ, P(x’ | s(1), a) = P(x’ | s(2), a) 
 
 

Theorem: Model-irrelevance ⇒ Q*-irrelevance ⇒ π*-irrelevance

5

Abstraction hierarchy

 ∑s′￼∈ϕ−1(x′￼) P(s′￼|s(1), a)

(bisimulation)

6

Why not P(s’ | s(1), a) = P(s’ | s(2), a) ?

x’

x

a

MDP M

z’

z

Markov chain C

P((x′￼, z′￼) | (x, z), a) = PM(x′￼|x, a) ⋅ PC(z′￼|z)

(x, z(1)) and (x, z(2)) cannot
be aggregated under the

s’-based condition

integrated out by
bisimulation

7

The abstract MDP implied by bisimulation

φ is bisimulation: R(s(1), a) = R(s(2), a) , P(x’ | s(1), a) = P(x’ | s(2), a)

• MDP Mφ = (Sφ, A, Pφ, Rφ, γ)

• For any x ∈ Sφ, a ∈ A, x’ ∈ Sφ

• Rφ(x, a) = R(s, a) for any s ∈ φ-1(x)

• Pφ(x’|x, a) = P(x’|s, a) for any s ∈ φ-1(x)

• No way to distinguish between the two routes (if a only depends
on φ(s)):

M

Mφ

{(s, a, r, s’)}
generate data

generate data
{(φ(s), a, r, φ(s’))}

compress

w/ φ

compress

w/ φ

8

Bisimulation => Q*-irrelevance

• Consider the Q* in Mφ , (dimension: |Sφ×A|)

• Lift from Sφ to S (populate aggregated states with the same value)

• Useful notation: Φ is a matrix, with 

• lifting a state-value function:

• collapsing the transition distribution: Φ P(s, a)

• Claim: (proof)

Q⋆
Mϕ

Q⋆
Mϕ

[Q⋆
Mϕ]M

= Q⋆
M

Φ(x, s) = 𝕀[ϕ(s) = x]
|Sϕ | × |S |

[V⋆
Mϕ

]M = Φ⊤V⋆
Mϕ

9

Useful/fun facts about bisimulation

• QM
π is preserved for any π lifted from an abstract policy

• Given any lifted π, distribution over reward sequence is preserved
(assuming reward is deterministic function of s, a)

• Coarsest bisimulation always exists: in any MDP, the common
coarsening of two bisimulations is always a bisimulation

• e.g., φ1 tells you to ignore some state variables, φ2 tells you to

ignore some others => can ignore both sets of variables!

• Intuitive but nontrivial; needs proof (see notes)

10

• Recall that bisimulation is defined by a reward condition and a
transition condition

• Guess what’s the coarsest bisimulation if we drop the reward
condition and only require the transition condition?

• Aggregate all states together!

• reward function defines a notion of (short-term) saliency

• can extend the definition by replacing reward function with

other functions (even not real-valued ones) whose codomain is
equipped with an equivalence notion

Useful/fun facts about bisimulation

11

The abstract model

• Consider planning, e.g., want to plan in the abstract model
instead of the original model to reduce computation cost

• Approach: compress the model (Mφ), and plan in Mφ (and lift the
policy back to M)

• We already showed: if φ is bisimulation, this approach produces
an optimal policy of M

• What if φ is Q*-irrelevant? or π*-irrelevant?

• π*-irrelevant: learned policy can be suboptimal (see refs in Li et

al’06)

• Q*-irrelevant: surprisingly, optimality is preserved; for details and

further reading, see ref notes.

12

Extension to handle action aggregation/permutation:
Homomorphisms

G

A

B S

W E

N

G

{A, B}

(a) (b)

Figure 1: (a) A symmetric gridworld problem. The goal state is G and there are four deterministic
actions. State-action pairs (A,E) and (B,N) are equivalent (see text). (b) A reduced model of the
gridworld in (a). The state-action pairs (A,E) and (B,N) in the original problem both correspond
to the pair ({A,B}, E) in the reduced problem.

literature [Hartmanis and Stearns, 1966]. Machine homomorphisms help establish precise correspon-
dences between automata that have similar behavior and identify states that can be aggregated to-
gether to derive “smaller” equivalent models. We extend the notion to MDPs by incorporating decision
making and stochasticity. But the power of our approach comes from employing a state-dependent
action recoding. This enables us to apply our results to a wider class of problems and extend existing
MDP abstraction frameworks in ways not possible earlier. Our approach to abstraction belongs to
the class of algorithms known as model minimization methods and can be viewed as an extension of
the MDP minimization framework proposed by Dean and Givan [Givan et al., 2003].

To illustrate the concept of minimization, consider the simple gridworld shown in Figure 1(a). The
goal state is labeled G. Taking action E in state A is equivalent to taking action N in state B, in the
sense that they go to equivalent states that are both one step closer to the goal. One can say that
the state-action pairs (A, E) and (B, N) are equivalent. One can exploit this notion of equivalence
to construct a smaller model of the gridworld (Figure 1(b)) that can be used to solve the original
problem.

While abstractions that lead to exact equivalences are very useful, they are often difficult to achieve.
To apply our approach to real-world problems we need to consider a variety of “relaxed” minimization
criteria. For example, in the gridworld in Figure 1 assume that the action E succeeds with probability
0.9 and the action N succeeds with probability 0.8. When actions fail, you stay in the same cell. We
could still consider (A,E) and (B,N) equivalent for minimization purposes.

In this article we explore a relaxation of our minimization framework to accommodate approximate
equivalence of state-action pairs. We use results from [Whitt, 1978] to bound the loss in performance
resulting from our approximations. Specifically, we introduce the concept of an approximate homomor-
phism which uses the average behavior of the aggregated states and is particularly useful in learning.
In [Ravindran and Barto, 2002] we introduced the concept of a bounded homomorphism based on
Bounded-parameter MDPs [Givan et al., 2000] and derived loose bounds on the loss of performance
resulting from the approximation. Approximate homomorphisms allow us to derive tighter bounds on
the loss and also more closely model approximations resulting from online behaviour of a learning or
planning agent as opposed to bounded homomorphisms.

Figure from: Ravindran & Barto. Approximate Homomorphisms: A framework for  
non-exact minimization in Markov Decision Processes. 2004.

13

Approximate abstractions

2 Approximate abstractions

In practice, exact abstractions are hard to find and verify, so we want our theory to handle approxi-
mate abstractions.

Definition 2 (lifting). For any function f that operates on �(S), let [f]M denote its lifted version,
which is a function over S , defined as [f]M (s) := f(�(s)). Similarly we can also lift a state-action
value function. Lifting a real-valued function f over states can also be expressed in vector form:
[f]M = �>f .

Definition 3 (Approximate abstractions). Given MDP M = (S,A, P,R, �) and state abstraction � that
operates on S , define the following types of abstractions:

1. � is an ✏⇡? -approximate ⇡?-irrelevant abstraction, if there exists an abstract policy ⇡ : �(S) ! A,
such that kV ?

M � V [⇡]M
M k1  ✏⇡? .

2. � is an ✏Q? -approximate Q?-irrelevant abstraction if there exists an abstract Q-value function
f : �(S)⇥A ! R, such that k[f]M �Q?

Mk1  ✏Q? .

3. � is an (✏R, ✏P)-approximate model-irrelevant abstraction if for any s(1) and s(2) where �(s(1)) =

�(s(2)), 8a 2 A,

|R(s(1), a)�R(s(2), a)|  ✏R,
����P (s(1), a)� �P (s(2), a)

���
1
 ✏P . (3)

Note that Definition 1 is recovered when all approximation errors are set to 0.
The following theorem characterizes the relationship between the 3 types of approximate abstrac-

tions, with Theorem 1 as a direct corollary.

Theorem 2. (1) If � is an (✏R, ✏P)-approximate model-irrelevant abstraction, then � is also an approximate

Q?
-irrelevant abstraction with approximation error ✏Q? = ✏R

1�� + �✏PRmax

2(1��)2 .

(2) If � is an ✏Q? -approximate Q?
-irrelevant abstraction, then � is also an approximate ⇡?

-irrelevant abstraction

with approximation error ✏⇡? = 2✏Q?/(1� �).

A useful lemma for proving Theorem 2:

Lemma 3. Let � be an (✏R, ✏P)-approximate model-irrelevant abstraction of M . Given any distributions

{px : x 2 �(S)} where each px is supported on ��1(s), define M� = (�(S),A, P�, R�, �), where R�(x, a) =

Es⇠px [R(s, a)], and P�(x0|x, a) = Es⇠px [P (x0|s, a)]. Then for any s 2 S, a 2 A,

|R�(�(s), a)�R(s, a)|  ✏R, kP�(x, a)� �P (s, a)k1  ✏P .

Proof. We only prove for the transition part; the reward part follows from a similar (and easier) ar-
gument. Consider any fixed x and a. Let qs := [P (x0|s, a)]x02�(S). By the definition of approximate
bisimulation we have kqs(1) �qs(2)k1  ✏P for any �(s(1)) = �(s(1)). The LHS of the claim on transition

5

2 Approximate abstractions

In practice, exact abstractions are hard to find and verify, so we want our theory to handle approxi-
mate abstractions.

Definition 2 (lifting). For any function f that operates on �(S), let [f]M denote its lifted version,
which is a function over S , defined as [f]M (s) := f(�(s)). Similarly we can also lift a state-action
value function. Lifting a real-valued function f over states can also be expressed in vector form:
[f]M = �>f .

Definition 3 (Approximate abstractions). Given MDP M = (S,A, P,R, �) and state abstraction � that
operates on S , define the following types of abstractions:

1. � is an ✏⇡? -approximate ⇡?-irrelevant abstraction, if there exists an abstract policy ⇡ : �(S) ! A,
such that kV ?

M � V [⇡]M
M k1  ✏⇡? .

2. � is an ✏Q? -approximate Q?-irrelevant abstraction if there exists an abstract Q-value function
f : �(S)⇥A ! R, such that k[f]M �Q?

Mk1  ✏Q? .

3. � is an (✏R, ✏P)-approximate model-irrelevant abstraction if for any s(1) and s(2) where �(s(1)) =

�(s(2)), 8a 2 A,

|R(s(1), a)�R(s(2), a)|  ✏R,
����P (s(1), a)� �P (s(2), a)

���
1
 ✏P . (3)

Note that Definition 1 is recovered when all approximation errors are set to 0.
The following theorem characterizes the relationship between the 3 types of approximate abstrac-

tions, with Theorem 1 as a direct corollary.

Theorem 2. (1) If � is an (✏R, ✏P)-approximate model-irrelevant abstraction, then � is also an approximate

Q?
-irrelevant abstraction with approximation error ✏Q? = ✏R

1�� + �✏PRmax

2(1��)2 .

(2) If � is an ✏Q? -approximate Q?
-irrelevant abstraction, then � is also an approximate ⇡?

-irrelevant abstraction

with approximation error ✏⇡? = 2✏Q?/(1� �).

A useful lemma for proving Theorem 2:

Lemma 3. Let � be an (✏R, ✏P)-approximate model-irrelevant abstraction of M . Given any distributions

{px : x 2 �(S)} where each px is supported on ��1(s), define M� = (�(S),A, P�, R�, �), where R�(x, a) =

Es⇠px [R(s, a)], and P�(x0|x, a) = Es⇠px [P (x0|s, a)]. Then for any s 2 S, a 2 A,

|R�(�(s), a)�R(s, a)|  ✏R, kP�(x, a)� �P (s, a)k1  ✏P .

Proof. We only prove for the transition part; the reward part follows from a similar (and easier) ar-
gument. Consider any fixed x and a. Let qs := [P (x0|s, a)]x02�(S). By the definition of approximate
bisimulation we have kqs(1) �qs(2)k1  ✏P for any �(s(1)) = �(s(1)). The LHS of the claim on transition

5

