State Abstractions

What are abstractions and why study them?

- When we use more sophisticated function approximation, we are always generalizing the knowledge learned from one state to other similar states.
- When is such generalization valid? What states can be considered as "similar"?
- To answer these questions, it is worth studying the simplest form of generalization: abstractions
- State abstractions \approx aggregate equivalent (or similar) states and run tabular algorithms

Examples of state abstractions

- Multiple ways of expressing an abstraction
- Mapping ϕ from original (or raw) states to abstract states
- Partition over the state space
- An equivalence notion over raw states
- Example 1: discretize a continuous state space
- Mapping from continuous state to the grid
- Partition is obvious
- Two original states are equivalent if they fall in the same grid
- Example 2: Suppose the original state is described by some state variables $s=(x, y) . \phi(s)=x$ is an abstraction
- mapping $\phi:(x, y) \mapsto x$
- Partition over $\{(x, y)\}$
- $s_{1}=\left(x_{1}, y_{1}\right)$ is equiv to $s_{2}=\left(x_{2}, y_{2}\right)$ iff $x_{1}=x_{2}$ (i.e., $\left.\phi\left(s_{1}\right)=\phi\left(s_{2}\right)\right)$

Notations and Formal Setup

- MDP $M=(S, A, P, R, \gamma)$
- Abstraction $\phi: S \rightarrow S_{\phi}$
- Surjection - aggregate states and treat as equivalent
- Are the aggregated states really equivalent?
- Do they have the same...
- optimal action?
- Q* values?
- dynamics and rewards?

Abstraction hierarchy

An abstraction ϕ is \ldots if $\ldots \forall s^{(1)}, s^{(2)}$ where $\phi\left(s^{(1)}\right)=\phi\left(s^{(2)}\right)$

- π^{*}-irrelevant: $\exists \pi_{M}{ }^{*}$ s.t. $\pi_{M}{ }^{*}\left(s^{(1)}\right)=\pi_{M}{ }^{*}\left(s^{(2)}\right)$
- Q^{*}-irrelevant: $\forall a, Q_{M}{ }^{*}\left(s^{(1)}, a\right)=Q_{M}{ }^{*}\left(s^{(2)}, a\right)$
- Model-irrelevant: $\forall a \in A$,

$$
R\left(s^{(1)}, a\right)=R\left(s^{(2)}, a\right)
$$

(bisimulation)

$$
\begin{gathered}
\forall a \in A, x^{\prime} \in S_{\phi,} \quad \frac{P\left(x^{\prime} \mid s^{(1)}, a\right)=P\left(x^{\prime} \mid s^{(2)}, a\right)}{\downarrow} \\
\sum_{s^{\prime} \in \phi^{-1}\left(x^{\prime}\right)} P\left(s^{\prime} \mid s^{(1)}, a\right)
\end{gathered}
$$

Theorem: Model-irrelevance $\Rightarrow Q^{*}$-irrelevance $\Rightarrow \pi^{*}$-irrelevance

Why not $P\left(s^{\prime} \mid s^{(1)}, a\right)=P\left(s^{\prime} \mid s^{(2)}, a\right)$?

The abstract MDP implied by bisimulation

ϕ is bisimulation: $R\left(s^{(1)}, a\right)=R\left(s^{(2)}, a\right), P\left(x^{\prime} \mid s^{(1)}, a\right)=P\left(x^{\prime} \mid s^{(2)}, a\right)$

- MDP $M_{\phi}=\left(S_{\phi}, A, P_{\phi}, R_{\phi}, \gamma\right)$
- For any $x \in S_{\phi,}, a \in A, x^{\prime} \in S_{\phi}$
- $R_{\phi}(x, a)=R(s, a)$ for any $s \in \phi^{-1}(x)$
- $P_{\phi}\left(x^{\prime} \mid x, a\right)=P\left(x^{\prime} \mid s, a\right)$ for any $s \in \phi^{-1}(x)$
- No way to distinguish between the two routes (if a only depends on $\phi(s))$:
compress
w / ϕ
$\downarrow$$\xrightarrow{\text { generate data }}\left\{\left(s, a, r, s^{\prime}\right)\right\}$

Bisimulation => Q*-irrelevance

- Consider the Q^{\star} in $M_{\phi}, Q_{M_{\phi}}^{\star}$ (dimension: $\left.\left|S_{\phi} \times A\right|\right)$
- Lift $Q_{M_{\phi}}^{\star}$ from S_{ϕ} to S (populate aggregated states with the same value)
- Useful notation: Φ is a $\left|S_{\phi}\right| \times|S|$ matrix, with

$$
\Phi(x, s)=\square[\phi(s)=x]
$$

- lifting a state-value function: $\left[V_{M_{\phi}}^{\star}\right]_{M}=\Phi^{\top} V_{M_{\phi}}^{\star}$
- collapsing the transition distribution: $\Phi P(s, a)$
- Claim: $\left[Q_{M_{\phi}}^{\star}\right]_{M}=Q_{M}^{\star}$ (proof)

Useful/fun facts about bisimulation

- $Q_{M} \pi$ is preserved for any π lifted from an abstract policy
- Given any lifted π, distribution over reward sequence is preserved (assuming reward is deterministic function of s, a)
- Coarsest bisimulation always exists: in any MDP, the common coarsening of two bisimulations is always a bisimulation
- e.g., ϕ_{1} tells you to ignore some state variables, ϕ_{2} tells you to ignore some others => can ignore both sets of variables!
- Intuitive but nontrivial; needs proof (see notes)

Useful/fun facts about bisimulation

- Recall that bisimulation is defined by a reward condition and a transition condition
- Guess what's the coarsest bisimulation if we drop the reward condition and only require the transition condition?
- Aggregate all states together!
- reward function defines a notion of (short-term) saliency
- can extend the definition by replacing reward function with other functions (even not real-valued ones) whose codomain is equipped with an equivalence notion

The abstract model

- Consider planning, e.g., want to plan in the abstract model instead of the original model to reduce computation cost
- Approach: compress the model $\left(M_{\phi}\right)$, and plan in M_{ϕ} (and lift the policy back to M)
- We already showed: if ϕ is bisimulation, this approach produces an optimal policy of M
- What if ϕ is Q^{*}-irrelevant? or π^{*}-irrelevant?
- π^{*}-irrelevant: learned policy can be suboptimal (see refs in Li et al'06)
- Q*-irrelevant: surprisingly, optimality is preserved; for details and further reading, see ref notes.

Extension to handle action aggregation/permutation: Homomorphisms

(a)

(b)

Figure from: Ravindran \& Barto. Approximate Homomorphisms: A framework for non-exact minimization in Markov Decision Processes. 2004.

Approximate abstractions

1. ϕ is an $\epsilon_{\pi^{\star}}$-approximate π^{\star}-irrelevant abstraction, if there exists an abstract policy $\pi: \phi(\mathcal{S}) \rightarrow \mathcal{A}$, such that $\left\|V_{M}^{\star}-V_{M}^{[\pi]_{M}}\right\|_{\infty} \leq \epsilon_{\pi^{\star}}$.
2. ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction if there exists an abstract Q-value function $f: \phi(\mathcal{S}) \times \mathcal{A} \rightarrow \mathbb{R}$, such that $\left\|[f]_{M}-Q_{M}^{\star}\right\|_{\infty} \leq \epsilon_{Q^{\star}}$.
3. ϕ is an $\left(\epsilon_{R}, \epsilon_{P}\right)$-approximate model-irrelevant abstraction if for any $s^{(1)}$ and $s^{(2)}$ where $\phi\left(s^{(1)}\right)=$ $\phi\left(s^{(2)}\right), \forall a \in \mathcal{A}$,

$$
\begin{equation*}
\left|R\left(s^{(1)}, a\right)-R\left(s^{(2)}, a\right)\right| \leq \epsilon_{R}, \quad\left\|\Phi P\left(s^{(1)}, a\right)-\Phi P\left(s^{(2)}, a\right)\right\|_{1} \leq \epsilon_{P} . \tag{3}
\end{equation*}
$$

Theorem 2. (1) If ϕ is an $\left(\epsilon_{R}, \epsilon_{P}\right)$-approximate model-irrelevant abstraction, then ϕ is also an approximate Q^{\star}-irrelevant abstraction with approximation error $\epsilon_{Q^{\star}}=\frac{\epsilon_{R}}{1-\gamma}+\frac{\gamma \epsilon \rho R_{\text {max }}}{2(1-\gamma)^{2}}$.
(2) If ϕ is an $\epsilon_{Q^{\star}}$-approximate Q^{\star}-irrelevant abstraction, then ϕ is also an approximate π^{\star}-irrelevant abstraction with approximation error $\epsilon_{\pi^{\star}}=2 \epsilon_{Q^{\star}} /(1-\gamma)$.

