
Background: Predictive State Representations (PSRs)

Setting: Given a manually designed                       . Ideally:  f  is already a state, e.g.,                       for rich enough Tf 

More realistically:  f  is incomplete. Naive alg: Combine          and (a smaller)          to predict 
Benefit: “f ” part computed directly in state update; no compounding errors.

PSR-f : Incorporating a given representation

Define:                                      , and 

● rank( f ; M) : # of “relevant” dimensions. The greater, the smaller        needed.
● rank( f ) - rank( f ; M) : # of “irrelevant” dimensions. The greater, the larger        needed.

○ Imagine  f  that provides useful info on some core H and takes arbitrary values elsewhere
○ Needs more than rank(M) histories to witness the inconsistent behavior

State dim & model size suffer from misspecification of f. Can we improve? Also, how to extend to spectral learning?

Theoretical Properties
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● Model non-Markov systems: need to compactly summarize history as state
● A plethora of methods: EM for HMMs/POMDPs, Spectral Learning for PSRs/

OOMs/WFAs, BPTT for RNNs, etc.
● Issue: difficult to incorporate prior knowledge about state representation

○ Many RL domains are almost Markov; just need a few bits to resolve ambiguity
○ User can write down an informative but incomplete state representation

● This work: Accelerate spectral learning with a given (& likely imperfect) state representation

State Representation Discovery

initial state distribution

System Dynamics Matrix M
● “Hankelness”: repeating anti-diagonal entries
● Low-rankness: rank ≤ # hidden states for 

HMMs/POMDPs

Maintain state during prediction
● State:            ,  prob. of a set of future events T
● Model parameter:
● Given new obs o, the new state is
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Learning algorithm
● Estimate full-rank submatrices + matrix inv
● “Spectral”: use over-complete T and 

compress by SVD
● Discovered state repr: 

Maintain state during prediction
● State:           concat. w/  f(h)
● Given new obs o, predict              , then 

concat. w/  f(ho)

PSR PSR-f

Consistency 
Condition

Minimal       .         rank(M)         rank(M) - rank( f ; M)

Minimal       .         rank(M)         rank(M) + rank( f ) - rank( f ; M)

State dimension         rank(M)         rank(M) + rank( f ) - rank( f ; M) (w/ naive alg)

Model size (# parameters in each Bo :) state dimension * minimal       

Experiments

Synthetic HMMs
●                        w/ |Tf|= 3, concat. w/ 0 or 3 

irrelevant features (“dummy-x”)
● Better than vanilla PSR & using f alone

Aircraft Identification domain
● HMM converted from POMDP using uniformly 

random actions
● Noisy obs. of position + foe/friend
● f(h) is smoothed estimation w/ quadratic features 

Negative Results
● Intuition:                         should always help
● Actually: can hurt a lot sometimes!
● Not specific to our setting; can reproduce in 

standard spectral learning (see above figure)
● Need new theory to explain

Naive idea Run Alg 1 with U set to the top singular vectors of           .

Problem Irrelevant dim. might dominate relevant ones spectrally; still need to keep the irrelevant info in state.
Solution Extract relevant dimensions out of f. 
Algorithm (Consistent with state dim rank(M) & naturally extends spectral learning.)
Input: f, estimated moments, T, H, k (≈rank(M)) and d (≈rank( f ; M))
● Choose large T and H. Run SVD on PT,H and truncate after k s.v.’s. 
● Identify intersection (of dim. d) between rowspaces of truncated PT,H and Pf,H robustly via principal angle.
● Let Uf be the projection of Pf,O* to the identified subspace. Let Uf Tf (·) be part of state.
● Project PT,H onto the orthogonal complement of the subspace; use SVD to identify the rest k-d dim of state as usual. 

Spectral Learning of PSR-f


